[发明专利]一种稀土掺杂NaGdF4上转换纳米晶及其制备方法有效
申请号: | 201610111475.7 | 申请日: | 2016-02-29 |
公开(公告)号: | CN105602566B | 公开(公告)日: | 2017-12-29 |
发明(设计)人: | 王友法;赵书文;王颖;周斌 | 申请(专利权)人: | 武汉理工大学 |
主分类号: | C09K11/85 | 分类号: | C09K11/85;B82Y30/00;B82Y20/00 |
代理公司: | 湖北武汉永嘉专利代理有限公司42102 | 代理人: | 崔友明 |
地址: | 430070 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于发光材料技术领域,具体涉及一种稀土掺杂NaGdF4上转换纳米晶及其制备方法。所述稀土掺杂NaGdF4上转换纳米晶的化学表达式为β‑NaGd(100‑X‑Y)F4X%Yb3+,Y%Er3+或β‑NaGd(100‑X‑Y)F4X%Yb3+,Y%Tm3+,所述X的取值范围为10~90,所述Y的取值范围为0.5~3。本发明采用高温热裂解法和溶剂热法制备得到Yb3+,Er3+或Yb3+,Tm3+掺杂的β‑NaGdF4上转换纳米晶材料,制备工艺简单易操作,大大降低了多色发光材料制备成本,并且制备过程绿色环保,在固体激光器、太阳能电池、红外辐射探测和生物医学成像等领域具有潜在的应用价值。 | ||
搜索关键词: | 一种 稀土 掺杂 nagdf sub 转换 纳米 及其 制备 方法 | ||
【主权项】:
一种稀土掺杂NaGdF4上转换纳米晶的制备方法,其特征在于,包括如下步骤:(1)称取稀土氧化物固体放入容器中,加入少量去离子水,磁力搅拌条件下升温,在升温过程中,滴加盐酸,使固体完全溶解得到透明溶液;在另一容器中加入氢氧化钠固体和油酸,在通保护气的条件下升温共热,直至氢氧化钠固体全部溶解得到油状液体;所述稀土氧化物为氧化钆/氧化镱/氧化铒的组合、或者氧化钆/氧化镱/氧化铥的组合;(2)将步骤(1)所述透明溶液加热蒸干后得到固体,将该固体与步骤(1)所述油状液体混合后一同加入到乙醇‑己烷‑水溶液中,常温下磁力搅拌一段时间, 然后静置分层,取上层液体,经洗涤、干燥后得到蜡状固体;(3)另取一容器,加入油酸钠、氟化铵和油胺,加热搅拌或超声震荡,使其分散均匀,得到溶液1;(4)将步骤(2)所述蜡状固体加入到油胺和十八烯的混合溶液中,在保护气的条件下边搅拌边升温共热,使得蜡状固体完全溶解得到溶液2;对溶液2继续加热升温至反应温度,将步骤(3)所得溶液1以一定速度注入到溶液2中,保温反应一段时间,反应液冷却至室温后关闭保护气;(5)向反应液中加入乙醇,沉淀、离心后得到白色样品,然后用环己烷分散白色样品,再加入乙醇进行沉淀、离心洗涤,反复洗涤数次后,最后经真空干燥,得到白色固体粉末,即为稀土掺杂β‑NaGdF4上转换纳米晶材料。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉理工大学,未经武汉理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610111475.7/,转载请声明来源钻瓜专利网。
- 一种基于铕离子双模式发光的NaGdF<sub>4</sub>多功能荧光标记纳米材料
- 一种亚10纳米NaGdF<sub>4</sub>纳米晶的制备方法
- 一种NaGdF4@CaF2核壳纳米晶的制备方法
- 聚丙烯酸改性的椭球状单分散NaGdF4:Yb3+,Er3+上转换荧光粉
- 聚丙烯酸改性的球状单分散NaGdF4:Yb3+,Er3+上转换荧光粉
- 一种亚10纳米NaGdF4纳米晶的表面修饰方法及其在核磁共振中的应用
- 一种高效近红外光响应的复合光催化剂及其制备方法和应用
- 一种上转换纳米颗粒、载药纳米颗粒及其制备方法和应用
- 一种β-NaGdF<base:Sub>4
- 一种近红外条件下示踪用抗体探针及其制备方法及用途
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法