[发明专利]一种多分辨率障碍物环境下移动机器人混合路径规划方法有效
申请号: | 201610278237.5 | 申请日: | 2016-04-29 |
公开(公告)号: | CN105717929B | 公开(公告)日: | 2018-06-15 |
发明(设计)人: | 尹全军;彭勇;秦龙;焦鹏;张琪;杨伟龙;孙林 | 申请(专利权)人: | 中国人民解放军国防科学技术大学 |
主分类号: | G05D1/02 | 分类号: | G05D1/02 |
代理公司: | 湖南兆弘专利事务所(普通合伙) 43008 | 代理人: | 赵洪 |
地址: | 410073 湖*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种多分辨率障碍物环境下移动机器人混合路径规划方法,目的是解决现有方法初始规划存在盲目性、环境建模缺乏灵活性、实时避障能力差的问题。技术方案是采用自适应非均匀极径的极坐标建模方法对移动机器人运动空间进行环境建模;采用重力粒子群搜索方法规划出从起点到终点的初始全局路径;根据初始全局路径,采用改进的人工势场法,通过预估最小安全距离和安全避碰角,进行局部动态避障,依次到达各初始全局路径点;到达规划终点则输出最终的全局无碰路径。采用本发明能有效改善初始全局规划的盲目性和环境建模灵活性,对动态未知障碍物的实时避障能力强,方法的速度快、精度高、适应性强。 1 | ||
搜索关键词: | 环境建模 全局路径 避障 移动机器人 障碍物环境 规划 多分辨率 混合路径 移动机器人运动 预估 最小安全距离 粒子群搜索 人工势场法 局部动态 全局规划 非均匀 极坐标 能力强 障碍物 自适应 避碰 极径 建模 输出 全局 改进 安全 | ||
第一步:采用自适应非均匀极径的极坐标建模方法对移动机器人运动空间进行环境建模,方法是:
1.1.在机器人运动空间内建立笛卡尔坐标系oxy,将机器人和预先探明的障碍物信息在笛卡尔坐标系oxy上标注,包括机器人起始位置S、目标点位置G以及各障碍物的顶点位置,从键盘接收已知的障碍物总数obnum;
1.2.以S为极点,SG射线为极轴,逆时针为正方向,建立机器人运动空间的极坐标系,将1.1中输入的机器人和预先探明的障碍物信息转化为极径和极角表示的极坐标信息;
1.3.确定初始全局路径点的个数和搜索空间:
1.3.1.确定初始全局路径点的极径序列:以SG的距离L为半径,在极轴两侧作四分之一圆;设置角度增量为δ,δ∈[5,90]且90能被δ整除,从极点S出发,依次引出极角为mδ,m=‑(90‑δ)/δ,‑(90‑2δ)/δ,...,‑1,0,1,...,(90‑2δ)/δ,(90‑δ)/δ,极径即始末点总距离为L的1+180/δ条向量,分别计算每条向量与每个障碍物各边的交点,将所有向量与障碍物的交点的极径按照从小到大的顺序排列,得到一个极径序列;
1.3.2.对所得的极径序列作以下处理:设置相邻的初始全局路径点之间允许的最大差值dmax和最小差值dmin,dmax根据L和最少需要的全局路径点个数来定,dmax为L/(q+1),q为最少需要的全局路径点个数;dmin根据L和最多需要的全局路径点个数来定,dmin为L/(p+1),p为最多需要的全局路径点个数;若极径序列中相邻两极径的差值大于Dmax,则在极径序列中这两相邻极径之间插入两相邻极径的平均值;若极径序列中两相邻极径的差值小于Dmin,则在极径序列中删除两相邻极径,在序列中插入两相邻极径的平均值,得到新的极径序列D=[d1,d2,...,dn],n为最终确定的极径个数;
第二步:采用重力粒子群搜索方法规划出从起点到终点的初始全局路径,机器人沿此初始全局路径边行走边进行局部动态避障,方法是:
2.1.初始化重力粒子群算法参数:
2.1.1.设置重力粒子群算法的参数:包括粒子群的粒子数目N,最大迭代代数Iter,学习因子c1、c2,加速度系数c3,N、Iter、c1、c2、c3均为正整数,初始化当前代数t为0,惯性因子w为0.9;
2.1.2.初始化粒子群中的每个粒子,粒子群表示粒子1,2,3,...,N的集合,每个粒子表示一个全局路径点序列,由全局路径点的极角序列和极径序列组成;粒子的维数,即所表示的初始全局路径点的个数初始化为n;粒子k的极径序列编码为Dk=[dk1,...,dki...,dkn],k=1,2,…,N,dki表示粒子k中第i个全局路径点的极径,取值范围为(0,L);D1,D2,...,DN均初始化为D;粒子k的极角序列编码为Xk=[θk1,…,θki,…,θkn],θki表示粒子k中第i个全局路径点的极角,取值范围为X1,X2,...,XN中的每个元素均初始化为0;粒子1,2,3,...,N的个体历史最优极角序列pbest1,pbest2,...,pbestN初始化为各自的极角序列X1,X2,...,XN,个体历史最优的路径长度flength(pbest1),flength(pbest2),...,flength(pbestN)均初始化为+∞,个体历史最优的路径碰撞约束co(pbest1),co(pbest2),...,co(pbestN)均初始化1,粒子群的全局最优极角序列gbest初始化为pbest1,gbest的路径长度flength(gbest)初始化为+∞,gbest的碰撞约束co(gbest)初始化为1;粒子k的速度序列编码为Vk=[vk1,..,vki,..,vkn],vki表示粒子k的第i个全局路径点的极角的变化速度,取值范围为对V1,V2,...,VN进行初始化;
2.2.计算粒子1,2,3,...,N所表示的路径的评价值,更新pbest1,pbest2,...,pbestN和gbest:
2.2.1.初始化k=1;
2.2.2.计算粒子k的Xk的路径长度flength(Xk):
2.2.3.计算粒子k的Xk的碰撞约束程度co(Xk):
其中
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军国防科学技术大学,未经中国人民解放军国防科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610278237.5/,转载请声明来源钻瓜专利网。
- 上一篇:无人机以及无人机防撞方法
- 下一篇:一种自动导引车AGV系统