[发明专利]高含硫天然气脱硫工艺强跟踪演化建模方法在审

专利信息
申请号: 201611003680.8 申请日: 2016-11-14
公开(公告)号: CN106777468A 公开(公告)日: 2017-05-31
发明(设计)人: 辜小花;杨利平;李太福;唐海红;张利亚;张堃;邱奎 申请(专利权)人: 重庆科技学院
主分类号: G06F17/50 分类号: G06F17/50;G06N3/02
代理公司: 重庆蕴博君晟知识产权代理事务所(普通合伙)50223 代理人: 王玉芝,杨明
地址: 401331 重*** 国省代码: 重庆;85
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供的高含硫天然气脱硫工艺强跟踪演化建模方法,包括选取影响脱硫效率的工艺参数和脱硫单元的性能指标;采集预设时间的所述工艺参数和所述性能指标的数据,剔除误差样本后形成样本集;对样本集进行归一化形成归一化样本集,并从中选取训练样本和测试样本;基于训练样本构建神经网络模型并确定神经网络模型的初始状态变量;用ST‑UKFNN算法估计神经网络模型的最优状态变量;将最优状态变量作为神经网络模型的连接权值和阈值,即获得权值阈值更新后的神经网络模型;将测试样本输入到更新后的神经网络模型,得到预测结果,将预测结果与测试样本中的实际输出进行比较,如果比较结果小于预设误差值,所构建的神经网络模型有效。
搜索关键词: 高含硫 天然气 脱硫 工艺 跟踪 演化 建模 方法
【主权项】:
一种高含硫天然气脱硫工艺强跟踪演化建模方法,包括:步骤S1:选择影响脱硫效率的工艺参数和脱硫单元的性能指标;其中,所述工艺参数包括进入尾气吸收塔贫的胺液流量、进入二级吸收塔的贫胺液流量、原料气处理量、尾气单元返回脱硫单元的半富胺液流量、一级吸收塔胺液入塔温度、二级吸收塔胺液入塔温度、闪蒸罐压力、一个重沸器的蒸汽消耗量、另一个重沸器的蒸汽消耗量和蒸汽预热器的蒸汽消耗量;所述脱硫单元的性能指标包括净化气中H2S和CO2的浓度以及净化气的产量;步骤S2:采集预设时间的所述工艺参数和所述性能指标的数据,剔除误差样本后形成样本集[X,Y];步骤S3:对样本集[X,Y]进行归一化,形成归一化样本集取所述归一化样本集中前80%的样本作为训练样本,而剩余的20%样本作为测试样本;步骤S4:基于所述训练样本构建神经网络模型和所述神经网络模型的初始状态变量X,以及,将所述训练样本中的作为所述神经网络模型的输入,将所述训练样本中的作为所述神经网络模型的输出;其中,所述神经网络模型为:Y=Σj=1s2(f(Σi=1S1wik1Ik+bi1))·wkj2+bj2---(1)]]>其中,Ik为所述训练样本的矢量样本值,并作为所述神经网络模型的输入,为网络输入层到隐含层的神经元的连接权值,为网络输入层到所述隐含层的神经元的阈值,为所述隐含层到网络输出层的神经元的连接权值,为所述隐含层到所述网络输出层的神经元的阈值,其中,i=1,2…S0;j=1,2…S1;k=1,2…S2;S0为所述网络输入层的神经元的数量,S1为所述网络隐含层的神经元的数量,S2为所述网络输出层的神经元的数量;所述初始状态变量为:X=w111Lws0s11b11Lbs11w112Lws1s22b12Lbs22T---(2)]]>步骤S5:利用ST‑UKFNN算法估计所述神经网络模型的最优状态变量;步骤S6:将所述最优状态变量作为所述神经网络模型的和对式(1)进行更新,获得所述训练样本更新后的神经网络模型;步骤S7:将所述测试样本中的输入到更新后的神经网络模型,得到预测结果,将所述预测结果与所述测试样本中的实际输出进行比较,如果比较结果小于预设误差值,所构建的神经网络模型有效;否则重复上述步骤S1‑S7,直至所述比较结果小于所述预设误差值为止。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆科技学院,未经重庆科技学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201611003680.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top