[发明专利]基于环境激励数据的多次测试下贝叶斯模型修正方法有效
申请号: | 201710070511.4 | 申请日: | 2017-02-09 |
公开(公告)号: | CN106897717B | 公开(公告)日: | 2020-11-03 |
发明(设计)人: | 张凤亮;倪艳春 | 申请(专利权)人: | 同济大学 |
主分类号: | G06K9/03 | 分类号: | G06K9/03;G06F17/18 |
代理公司: | 上海科律专利代理事务所(特殊普通合伙) 31290 | 代理人: | 叶凤 |
地址: | 200092 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明目的在于克服传统方法的缺点,给出一种基于环境激励数据的多次测试下贝叶斯模型修正方法,可实现对多次测试数据进行直接的处理分析,可对多次测试得到的模态参数进行一次性输入,模型修正结果直接输出。本发明技术方案可用来解决基于实际测试数据的有限元模型修正问题。本发明分两个阶段,第一阶段是对多次测试下采集的环境激励下结构加速度数据进行分析,得到每次测试测得的结构的固有频率和振型,并计算这些模态参数的不确定性,用协方差矩阵来表示。第二个阶段是基于多次测试得到的结构模态参数及其协方差矩阵,基于贝叶斯理论构建目标函数,通过对目标函数的优化,得到需要修正的有限元模型的模型参数的最优值。 | ||
搜索关键词: | 基于 环境 激励 数据 多次 测试 下贝叶斯 模型 修正 方法 | ||
【主权项】:
一种基于环境激励数据的多次测试下贝叶斯模型修正方法,其特征在于,分两个阶段,第一阶段是对多次测试下采集的环境激励下结构加速度数据进行分析,得到每次测试测得的结构的固有频率和振型,并计算这些模态参数的不确定性,用协方差矩阵来表示;第二个阶段是基于多次测试得到的结构模态参数及其协方差矩阵,基于贝叶斯理论构建目标函数,通过对目标函数的优化,得到需要修正的有限元模型的模型参数的最优值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710070511.4/,转载请声明来源钻瓜专利网。
- 上一篇:一种指纹解锁处理方法及移动终端
- 下一篇:一种移动终端
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置