[发明专利]一种基于判别字典学习的多源图像融合去噪的方法有效
申请号: | 201810000859.0 | 申请日: | 2018-01-02 |
公开(公告)号: | CN108198147B | 公开(公告)日: | 2021-09-14 |
发明(设计)人: | 李华锋;王一棠 | 申请(专利权)人: | 昆明理工大学 |
主分类号: | G06T5/00 | 分类号: | G06T5/00 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 650093 云*** | 国省代码: | 云南;53 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: |
本发明涉及一种基于判别字典学习的多源图像融合去噪的方法;首先采集多源图像作为训练样本,通过K‑SVD算法学习样本,得初始卡通字典和初始纹理字典,引入加权核范数约束提出新的字典学习模型,新字典学习模型学习,得到卡通字典和纹理字典,利用MCA算法分解待融合图像,得到卡通成分和纹理成分,对卡通成分引入加权Schatten稀疏核范数约束,对纹理成分添加灰度直方图梯度保护,提出新的图像分解模型,迭代此模型得到卡通稀疏编码系数和纹理稀疏编码系数,根据对应成分的稀疏编码系数l |
||
搜索关键词: | 一种 基于 判别 字典 学习 图像 融合 方法 | ||
【主权项】:
1.一种基于判别字典学习的多源图像融合去噪的方法,其特征在于,首先采集多源图像作为训练样本,通过K‑SVD算法先对训练样本学习得到初始卡通字典和初始纹理字典,为了提高字典的判别性和表达能力,通过引入加权核范数约束提出一种新的字典学习模型,根据提出的字典学习方法利用初始字典和训练样本学习,得到卡通字典和纹理字典,然后利用MCA算法将待融合的多源含噪图像分解得到卡通成分和纹理成分,通过对卡通成分引入加权Schatten稀疏核范数约束,对纹理成分添加灰度直方图梯度保护提出一种新的图像分解模型,确保不同成分成功分离,对此模型进行迭代,得到卡通稀疏编码系数和纹理稀疏编码系数,最后,根据对应成分的稀疏编码系数l1范数值最大原则来选取融合图像的编码系数,分别融合得到卡通成分和纹理成分,最后将两部分相加后便得到最终的融合去噪图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于昆明理工大学,未经昆明理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810000859.0/,转载请声明来源钻瓜专利网。
- 上一篇:一种降噪方法、设备和计算机可读存储介质
- 下一篇:图像处理的方法及装置