[发明专利]一种基于带约束稀疏表示的高光谱图像异常检测方法有效
申请号: | 201810194560.3 | 申请日: | 2018-03-09 |
公开(公告)号: | CN108492283B | 公开(公告)日: | 2021-01-26 |
发明(设计)人: | 林再平;凌强;安玮;盛卫东;李骏;曾瑶源 | 申请(专利权)人: | 中国人民解放军国防科技大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06K9/46 |
代理公司: | 长沙国科天河知识产权代理有限公司 43225 | 代理人: | 董惠文 |
地址: | 410073 湖*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于图像处理领域,涉及一种基于带约束稀疏表示的高光谱图像异常检测方法,包括以下步骤:(S1)将高光谱图像线性规范化;(S2)对于每一个测试像元,根据双窗模型提取局部背景字典;(S3)根据局部背景字典,求解带约束稀疏表示模型,得到模型最优解一;(S4)根据模型最优解一,将所有异常原子从局部背景字典中删除,得到新的背景字典;(S5)根据新的背景字典,求解带约束稀疏表示模型,得到模型最优解二;(S6)根据模型最优解二,计算像元的检测值;(S7)遍历整个高光谱图像,对高光谱图像的每一个像元计算检测值,输出这些检测值构成的图像,即异常检测图像。本发明不需要背景统计信息和设置稀疏度,提高了重构精度。 | ||
搜索关键词: | 一种 基于 约束 稀疏 表示 光谱 图像 异常 检测 方法 | ||
【主权项】:
1.一种基于带约束稀疏表示的高光谱图像异常检测方法,其特征在于,包括以下步骤:(S1)将高光谱图像线性规范化;(S2)对于每一个测试像元,根据双窗模型提取局部背景字典;(S3)根据局部背景字典,求解带约束稀疏表示模型,得到模型最优解一;(S4)根据模型最优解一,将所有异常原子从局部背景字典中删除,得到新的背景字典;(S5)根据新的背景字典,求解带约束稀疏表示模型,得到模型最优解二;(S6)根据所述步骤(S5)中的模型最优解二,计算像元的检测值;(S7)遍历整个线性规范化后的高光谱图像,对高光谱图像的每一个像元计算检测值,输出这些检测值构成的图像,即异常检测图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军国防科技大学,未经中国人民解放军国防科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810194560.3/,转载请声明来源钻瓜专利网。