[发明专利]基于变分解耦合方式对符号有向网络的表达学习方法有效

专利信息
申请号: 201811184604.0 申请日: 2018-10-11
公开(公告)号: CN109523012B 公开(公告)日: 2021-06-04
发明(设计)人: 张娅;陈旭;姚江超;李茂森;王延峰 申请(专利权)人: 上海交通大学
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08;G06Q50/00
代理公司: 上海汉声知识产权代理有限公司 31236 代理人: 庄文莉
地址: 200240 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于变分解耦合方式对符号有向网络的表达学习方法,读取社交网站的符号有向网络数据,符号有向网络数据主要包括节点间边正负和方向的网络数据;令符号有向网络数据根据符号进行分离,得到正无向图、负无向图,所述正无向图用邻接矩阵A+表示,所述负无向图用邻接矩阵A表示;令邻接矩阵A+、A输入至变分解耦合编码器,进行节点编码后的向量表达学习,记为学习后向量表达;基于符号有向网络中节点间的关系构建结构解码器,依照目标损失函数进行修正,得到优化后向量表达;令优化后向量表达应用于设定的数据挖掘任务。通过分离符号有向网络形成正无向网络、负无向网络,学习节点的符号化局部连续性特征,充分挖掘节点间的依赖性模式,适合于社交网络中用户推荐。
搜索关键词: 基于 分解 耦合 方式 符号 网络 表达 学习方法
【主权项】:
1.一种基于变分解耦合方式对符号有向网络的表达学习方法,其特征在于,包括以下步骤:符号有向网络数据收集步骤:读取社交网站的符号有向网络数据,所述符号有向网络数据主要包括节点间边正负和方向的网络数据;符号有向网络分离步骤:令符号有向网络数据根据符号进行分离,得到正无向图、负无向图,所述正无向图用邻接矩阵A+表示,所述负无向图用邻接矩阵A‑表示;变分解耦合编码器步骤:令邻接矩阵A+、A‑输入至变分解耦合编码器,进行节点编码后的向量表达学习,记为学习后向量表达;结构解码器步骤:基于符号有向网络中节点间的关系构建结构解码器,令学习后向量表达依照目标损失函数进行修正,得到目标优化损失函数作为优化后向量表达;数据挖掘任务应用步骤:令优化后向量表达应用于设定的数据挖掘任务。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811184604.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top