[发明专利]一种基于视觉整体和局部特征融合的轮廓检测方法有效

专利信息
申请号: 201811202617.6 申请日: 2018-10-16
公开(公告)号: CN109558880B 公开(公告)日: 2021-06-04
发明(设计)人: 范影乐;谭明明;武薇 申请(专利权)人: 杭州电子科技大学
主分类号: G06K9/46 分类号: G06K9/46;G06K9/62
代理公司: 杭州君度专利代理事务所(特殊普通合伙) 33240 代理人: 朱月芬
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于视觉整体和局部特征融合的轮廓检测方法。首先针对轮廓待检测图像,分别提取表征其整体特性的低分辨子图I1和表征其局部特征的边界响应子图I2。然后构建包含池化模块的卷积神经网络G,实现整体轮廓信息的快速提取。接着构建包含空洞卷积模块的卷积神经网络L,实现局部轮廓信息提取。其中L由四个单元、一个融合层和一个损失层构成;最后将I1和I2分别输入到网络G和网络L中,获得整体轮廓信息和局部轮廓信息。以L(i,j)的尺寸为基准,对G(i,j)进行双线性插值。根据L(i,j)各像素的对比度关系,对整体轮廓信息G(i,j)进行融合,从而获取精细轮廓。
搜索关键词: 一种 基于 视觉 整体 局部 特征 融合 轮廓 检测 方法
【主权项】:
1.一种基于视觉整体和局部特征融合的轮廓检测方法,其特征在于,该方法具体包括以下步骤:步骤(1)针对轮廓待检测图像,提取表征其整体特性的低分辨子图I1;首先利用双线性插值法,对轮廓待检测图像进行尺寸扩展,使扩展后图像I的长和宽相等,长和宽均等于M,其中M为2的整数幂次值;然后利用高斯金字塔方法,对I进行分解层数为n的尺度分解,得到分解后的低分辨率子图I1,用来表征轮廓待检测图像的整体特性;I1尺寸记为N1×N1,N1的默认值为64;因此可根据图像I的长和宽,获得分解层数n的具体数值;步骤(2)针对轮廓待检测图像,提取表征其局部特征的边界响应子图I2;设置具有方向选择特性的经典感受野,分别利用二维高斯导函数模型提取扩展后图像I在中心水平、中心垂直、正对角线、负对角线上的方向响应;然后针对I的任意像素,获得所有方向上的最大响应,并结合方向响应的响应强度系数确定最终的边界响应,从而得到具有局部特征的边界响应子图I2;步骤(3)构建包含池化模块的卷积神经网络G,实现整体轮廓信息快速提取;其中G由四个单元和一个损失层构成,前两个单元都分别由双层普通卷积层和池化层组成,第三个单元由双层普通卷积层组成,第四个单元由上采样层和单层普通卷积层组成;构建具有上述结构特性的卷积神经网络G,其中初始卷积核权重随机设置;将步骤(1)获得的低分辨子图I1训练样本输入卷积神经网络G,经sigmod函数激活后与训练样本轮廓标签做损失运算,沿损失减小方向反向传播更新卷积核权重,迭代多次,至损失值小于阈值£,获得训练后的卷积神经网络G;步骤(4)构建包含空洞卷积模块的卷积神经网络L,实现局部轮廓信息精细提取;其中L由四个单元、一个融合层和一个损失层构成,每个单元由单层普通卷积层和单层空洞卷积层组成,其中普通卷积核与空洞卷积核的个数相同,四个单元空洞卷积的dilated分别等于2,2,4,4;构建具有上述结构特性的卷积神经网络L,其中初始卷积核权重随机设置;将步骤(2)获得的边界响应子图I2训练样本输入卷积神经网络L,经sigmod函数激活后与训练样本轮廓标签做损失运算,沿损失减小方向反向传播更新卷积核权重,迭代多次,至损失值小于阈值获得训练后的卷积神经网络L;步骤(5)实现整体和局部轮廓信息的融合,获取精细轮廓;首先将待检测图像经过步骤(1)和步骤(2)处理后,获得其所对应的低分辨子图I1和边界响应子图I2;将I1和I2分别输入到网络G和网络L中,获得整体轮廓信息G(i,j)和局部轮廓信息L(i,j);以L(i,j)的尺寸为基准,对G(i,j)进行双线性插值;根据L(i,j)各像素的对比度关系,对整体轮廓信息G(i,j)进行融合,从而获取精细轮廓;具体处理过程如下:①求出L(i,j)中每个像素点的对比度,此处用temp(i,j)表示;②以图像坐标(u,v)处像素为例,当该点为轮廓点时,即temp(u,v)>ξ;③当该点为非轮廓点时,即temp(u,v)≤ξ;其中ξ表示轮廓像素点的对比度阈值,默认值为最大对比度的75%。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811202617.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top