[发明专利]一种结合道路网络拓扑结构与语义关联的拥堵指数预测方法有效
申请号: | 201811552071.7 | 申请日: | 2018-12-19 |
公开(公告)号: | CN109636049B | 公开(公告)日: | 2021-10-29 |
发明(设计)人: | 吕明琪;洪照雄;徐威;陈铁明 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/30;G06N3/04;G06N3/08 |
代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
地址: | 310014 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种结合道路网络拓扑结构与语义关联的拥堵指数预测方法,包括以下步骤:(1)基于道路网络的空间拓扑结构建立一个无向图;(2)首先计算道路历史拥堵指数数据间相似度,然后基于该相似度建立一个加权无向图,最后对该加权无向图进行嵌入得到表征道路的语义向量;(3)基于图卷积网络抽取短期拥堵指数变化特征,基于循环神经网络抽取长期拥堵指数变化特征,在此基础上融合道路语义向量建立预测模型。本发明同时考虑道路网络的空间拓扑关联和历史语义关联,提高了模型的预测能力;采用图卷积网络对道路网络拓扑结构建模,采用图嵌入对道路网络语义关联建模,使得道路网络拓扑结构和语义关联可以被深度神经网络处理。 | ||
搜索关键词: | 一种 结合 道路 网络 拓扑 结构 语义 关联 拥堵 指数 预测 方法 | ||
【主权项】:
1.一种结合道路网络拓扑结构与语义关联的拥堵指数预测方法,其特征在于,所述方法包括以下步骤:(1)道路网络拓扑结构图构建:基于道路网络的空间拓扑结构建立一个无向图;(2)道路网络语义关联图构建:首先计算道路历史拥堵指数数据间相似度,然后基于该相似度建立一个加权无向图,最后对该加权无向图进行嵌入得到表征道路的语义向量;(3)基于混合深度神经网络的预测模型构建:基于图卷积网络抽取短期拥堵指数变化特征,基于循环神经网络抽取长期拥堵指数变化特征,在此基础上融合道路语义向量建立预测模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811552071.7/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理