[发明专利]融合改进的SILTP和局部方向模式的学习者姿态识别方法有效

专利信息
申请号: 201811649123.2 申请日: 2018-12-30
公开(公告)号: CN109697432B 公开(公告)日: 2023-04-07
发明(设计)人: 郭敏;邝毓茜;马苗;裴炤;陈昱莅 申请(专利权)人: 陕西师范大学
主分类号: G06V40/10 分类号: G06V40/10;G06V10/764;G06V10/80
代理公司: 西安永生专利代理有限责任公司 61201 代理人: 郝燕燕
地址: 710062 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种融合改进的SILTP和局部方向模式的学习者姿态识别方法,由图像预处理、提取三尺度加权的自适应SILTP特征、提取改进的局部方向模式特征FLVR、将三尺度加权自适应SILTP特征FMWA‑SILTP和改进的局部方向模式特征FLVR进行融合得到姿态识别的总特征FMWASILTP‑LVR、采用支持向量机对学习者姿态分类识别组成。本发明在SILTP中采用自适应阈值,得到自适应SILTP,可动态生成适应于各样本的阈值,自适应性更强;并在SILTP中引入三尺度加权机制,将不同尺度的自适应SILTP以不同权重融合,具有较好的特征表征能力;在局部方向模式中融入方差VAR,充分利用图像的边缘梯度信息和灰度值变化强度;本发明具有抗干扰性强、识别率高等优点,可用于学习者姿态识别及其它图像识别和分类。
搜索关键词: 融合 改进 siltp 局部 方向 模式 学习者 姿态 识别 方法
【主权项】:
1.一种融合改进的SILTP和局部方向模式的学习者姿态识别方法,其特征在于由下述步骤组成:(1)图像预处理对学习者姿态图像进行尺度归一化处理,并将图像转化为灰度图像{G(p,q)},p是灰度图像像素点的横坐标,q是灰度图像像素点的纵坐标,p、q均为正整数;(2)提取三尺度加权的自适应SILTP特征(2.1)根据全局和局部邻域对比度值的离散程度自动生成当前邻域的自适应阈值ε,并进行SILTP编码,得到自适应SILTP,自适应SILTP的表达式为式中(xc,yc)为灰度图像{G(p,q)}像素点的位置,Ic是中心像素点的灰度值,Ik是以中心像素点为圆心、半径为R区域内N邻域所对应的像素点的灰度值,k∈{0,1,...,N‑1},R为有限正整数,N取4或8,ε是自适应阈值,是比特连接运算符,sε是分段函数;所述的分段函数sε(2.2)提取灰度图像{G(p,q)}的三个尺度的自适应SILTP特征,并将该三个尺度的自适应SILTP特征以不同权重融合,得到三尺度加权自适应SILTP特征FMWA‑SILTP;(3)提取改进的局部方向模式特征FLVR(3.1)把灰度图像{G(p,q)}送入局部方向模式中,选取前3个最大边缘响应绝对值并设为1,提取灰度图像{G(p,q)}的局部方向模式特征FLDP;(3.2)通过计算灰度图像{G(p,q)}每个像素点在(R1,N1)邻域内的方差VAR值,提取灰度图像{G(p,q)}的方差VAR直方图特征FVAR,R1是邻域半径,N1是邻域节点数目,R1为正整数,N1取4或8;(3.3)将局部方向模式特征FLDP和方差VAR直方图特征FVAR进行融合,作为图像{G(p,q)}的改进的局部方向模式特征FLVR;(4)将三尺度加权自适应SILTP特征FMWA‑SILTP和改进的局部方向模式特征FLVR进行融合,得到姿态识别的总特征FMWASILTP‑LVR;(5)采用支持向量机对学习者姿态进行分类识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于陕西师范大学,未经陕西师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811649123.2/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top