[发明专利]一种基于模糊理论和神经网络的测井相识别方法有效

专利信息
申请号: 201910042398.8 申请日: 2016-08-30
公开(公告)号: CN109800863B 公开(公告)日: 2023-05-23
发明(设计)人: 李忠伟;张卫山;宋弢;卢清华;崔学荣;刘昕;赵德海;何旭 申请(专利权)人: 中国石油大学(华东)
主分类号: G06N3/0464 分类号: G06N3/0464;G06N3/043
代理公司: 北京科亿知识产权代理事务所(普通合伙) 11350 代理人: 汤东凤
地址: 266000 山东省*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出了一种基于模糊理论和神经网络的测井相识别方法,首先,构建模糊区域卷积神经网络,将给出目标假设区域和目标识别放入同一个网络中,共享卷积计算,一个训练过程更新整个网络的权重;接下来,测井数据经过模糊区域卷积神经网络进行卷积和池化操作,卷积层和池化层交互,在卷积层和池化层进行模糊操作,从模糊区域卷积神经网络的第一层开始,逐渐增加模糊化的层数,针对不同的数据集调整模糊化层数,模糊区域卷积神经网络的最后一层得到特征向量,该特征向量通过一个滑动窗口将特征映射到一个低维向量中,然后将特征输入到两个全连接层,一个全连接层用来定位,另一个全连接层用来分类。
搜索关键词: 一种 基于 模糊 理论 神经网络 测井 相识 方法
【主权项】:
1.一种基于模糊理论和神经网络的测井相识别方法,其特征在于,首先,构建模糊区域卷积神经网络,将给出目标假设区域和目标识别放入同一个网络中,共享卷积计算,一个训练过程更新整个网络的权重;接下来,测井数据经过模糊区域卷积神经网络进行卷积和池化操作,卷积层和池化层交互,在卷积层和池化层进行模糊操作,从模糊区域卷积神经网络的第一层开始,逐渐增加模糊化的层数,针对不同的数据集调整模糊化层数,模糊区域卷积神经网络的最后一层得到特征向量,该特征向量通过一个滑动窗口将特征映射到一个低维向量中,然后将特征输入到两个全连接层,一个全连接层用来定位,另一个全连接层用来分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油大学(华东),未经中国石油大学(华东)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910042398.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top