[发明专利]一种基于深度学习和数据关联的在线多目标跟踪方法有效

专利信息
申请号: 201910429444.X 申请日: 2019-05-22
公开(公告)号: CN110288627B 公开(公告)日: 2023-03-31
发明(设计)人: 陈小波;冀建宇;王彦钧;蔡英凤;王海;陈龙 申请(专利权)人: 江苏大学
主分类号: G06T7/20 分类号: G06T7/20
代理公司: 暂无信息 代理人: 暂无信息
地址: 212013 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习和数据关联的在线多目标跟踪方法,包括如下步骤:1、输入视频当前帧的图像;2、应用目标检测器得到图像中所有的检测响应;3、利用深度余弦度量学习模型提取检测响应的外观特征;4、初始化目标状态;5、利用卡尔曼滤波算法预测目标在下一帧的位置和尺度;6、基于两阶段数据关联将目标与检测响应的匹配关联,得到最优关联结果;7、根据步骤6中的最优关联结果更新目标的状态和特征;8、输入下一视频帧的图像,重复步骤2、3、4、5、6、7,直到视频结束。与现有技术相比,本发明能在目标交互与遮挡、目标间具有相似外观等复杂情况下,实现目标之间的正确关联,完成鲁棒且持续的多目标跟踪。
搜索关键词: 一种 基于 深度 学习 数据 关联 在线 多目标 跟踪 方法
【主权项】:
1.一种基于深度学习和数据关联的在线多目标跟踪方法,其特征在于,所述方法包括如下步骤:步骤1:输入视频当前帧的图像;步骤2:应用目标检测器得到图像中所有检测响应的集合Dt={D1,D2,…,DM},t为当前帧号,Dj为第j个检测响应,表示为其中为检测响应Dj的中心点坐标,为检测响应Dj的宽和高,M为检测响应总数;步骤3:利用深度余弦度量学习模型从检测响应集合Dt中的所有检测响应提取外观特征向量,表示为{Z1,Z2,…,ZM},其中Zj∈Rp为检测响应Dj的外观特征;步骤4:初始化目标状态,将目标状态分为4类:初始状态、跟踪状态、丢失状态和删除状态;如果t=1,即输入视频的第一帧,产生目标集合Tt={T1,T2,…,TN},N=M,目标Tj与检测响应Dj对应,并将目标Tj的状态置为初始状态,转到步骤1;否则,转到步骤5;步骤5:应用卡尔曼滤波算法,预测目标集合Tt‑1中的每个目标Ti在当前帧中的位置和尺度,表示为其中为预测的中心点坐标,为预测的宽和高;步骤6:基于两阶段数据关联将目标与检测响应匹配关联,得到最优关联结果;步骤7:根据步骤6中的最优关联结果更新目标的状态和特征;步骤8:输入下一视频帧的图像,重复步骤2、3、4、5、6、7直到视频结束。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910429444.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code