[发明专利]一种基于深度学习的路面灌封裂缝检测方法在审
申请号: | 201910498481.6 | 申请日: | 2019-06-10 |
公开(公告)号: | CN110348308A | 公开(公告)日: | 2019-10-18 |
发明(设计)人: | 孙朝云;沙爱民;李伟;郝雪丽;陈瑶;裴莉莉 | 申请(专利权)人: | 长安大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62 |
代理公司: | 西安恒泰知识产权代理事务所 61216 | 代理人: | 王芳 |
地址: | 710064 陕西省*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的路面灌封裂缝检测方法:步骤1:采集路面灌封裂缝图像,进行图像增广得到路面图像;步骤2:对路面图像进行图像标注,得到每一幅路面图像对应的裂缝区域框;将所有标注后的路面灌封裂缝图像放缩为统一尺寸,得到放缩后的图像,作为训练集;步骤3:构建灌封裂缝检测模型,将训练集输入所构建的灌封裂缝检测模型中进行训练,得到灌封裂缝模型的最优权重;步骤4:将待检测图像输入训练后得到的灌封裂缝检测模型中,得到待检测图像中物体是灌封裂缝的置信度和检测框,将灌封裂缝置信度和检测框标注在待检测图像上。本发明首次使用了深度学习的方法对路面图像中的灌封裂缝进行检测,并能够达到0.8994的检测精度。 | ||
搜索关键词: | 灌封 裂缝检测 路面图像 待检测图像 裂缝 裂缝图像 检测框 训练集 置信度 构建 标注 图像 裂缝模型 裂缝区域 首次使用 图像标注 检测 优权 学习 采集 统一 | ||
【主权项】:
1.一种基于深度学习的路面灌封裂缝检测方法,其特征在于,包括如下步骤:步骤1:采集N幅路面灌封裂缝图像,对N幅路面灌封裂缝图像进行图像增广,得到M幅路面图像,M>N;步骤2:对M幅路面图像进行图像标注,得到每一幅路面图像对应的裂缝区域框;将所有标注后的路面灌封裂缝图像放缩为统一尺寸,得到放缩后的图像,作为训练集;步骤3:构建灌封裂缝检测模型,将训练集输入所构建的灌封裂缝检测模型中进行训练,得到灌封裂缝模型的最优权重;步骤4:将待检测图像输入经步骤3训练后得到的灌封裂缝检测模型中,得到待检测图像中物体是灌封裂缝的置信度和检测框,将灌封裂缝置信度和检测框标注在待检测图像上。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于长安大学,未经长安大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910498481.6/,转载请声明来源钻瓜专利网。
- 上一篇:一种手写输入方法及系统
- 下一篇:一种光学指纹感测器和显示屏