[发明专利]基于属性网络表征学习的网络服务异常检测方法及装置有效

专利信息
申请号: 202010042262.X 申请日: 2020-01-15
公开(公告)号: CN111277433B 公开(公告)日: 2021-02-12
发明(设计)人: 王成;朱航宇;胡瑞鑫 申请(专利权)人: 同济大学
主分类号: H04L12/24 分类号: H04L12/24;H04L29/06;G06N20/00;G06K9/62
代理公司: 上海光华专利事务所(普通合伙) 31219 代理人: 徐迪怡
地址: 200092 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于属性网络表征学习的网络服务异常检测方法及装置,包括:获取初始网络服务数据,并基于其构建异质信息网络,获取节点属性集合;基于节点属性集合构建属性向量集,并根据属性向量集和异质信息网络构建属性信息网络;基于属性信息网络构建目标函数,并基于对其求解得到的网络表征学习要学习的节点对应向量构建属性信息网络中节点和与其对应的向量表征的映射关系;基于训练集数据训练得到异常检测模型,并根据异常检测模型计算测试集数据中每笔网络服务数据的异常概率。本发明增强了属性信息网络中节点的关联性,提高了异常检测模型的泛化能力,对检测异常、拦截异常和保护用户和企业的资金安全有更好的保障。
搜索关键词: 基于 属性 网络 表征 学习 网络服务 异常 检测 方法 装置
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010042262.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top