[发明专利]一种基于深度学习的工业CT检测缺陷的智能识别方法在审
申请号: | 202010717952.0 | 申请日: | 2020-07-23 |
公开(公告)号: | CN112102229A | 公开(公告)日: | 2020-12-18 |
发明(设计)人: | 赵纪元;王军军;张周锁 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06N3/08;G06N3/04;G06K9/62 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 李红霖 |
地址: | 710049 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于深度学习的工业CT检测缺陷的智能识别方法,采集工业CT检测图像;对工业CT检测图像进行处理,得到深度学习数据集;搭建U‑net网络;U‑net网络训练;利用训练好的U‑net网络对新的工业CT检测图像的缺陷进行自动识别。本发明无需复杂的特征提取过程,可以将工业CT检测图像直接输入到U‑net网络中,大大减少了预处理的难度;由于通过卷积操作采用局部感受野和权值共享技术减少了参数空间,大幅度降低了算法的复杂度;本发明采用U‑net网络进行工业CT检测缺陷识别,具有高准确率、低危害性缺陷漏检率和高灵敏度的特点。 | ||
搜索关键词: | 一种 基于 深度 学习 工业 ct 检测 缺陷 智能 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010717952.0/,转载请声明来源钻瓜专利网。