[发明专利]一种基于数据保护的图像增量学习方法有效

专利信息
申请号: 202010781900.X 申请日: 2020-08-06
公开(公告)号: CN112115967B 公开(公告)日: 2023-08-01
发明(设计)人: 王文宇;赖韩江;潘炎 申请(专利权)人: 中山大学
主分类号: G06V10/764 分类号: G06V10/764;G06V10/774;G06V10/82;G06N3/0464;G06N3/08
代理公司: 广州粤高专利商标代理有限公司 44102 代理人: 刘俊
地址: 510275 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于数据保护的图像增量学习方法,该方法以深度卷积神经网络ResNet为基础,充分利用外部海量图像的信息,对其进行采样并加入训练过程,来缓解新旧样本不均衡所带来的偏差和灾难性遗忘,外部数据即采即用,训练后直接丢弃,不占用存储空间。同时加入针对于各个任务阶段的输出,提取关于任务的特征,提高模型的性能表现。本发明所提出的增量学习方法突破了传统方法的限制,能够灵活广泛地适应多种实际场景的需求,在计算机视觉领域具有重要的研究和应用价值。
搜索关键词: 一种 基于 数据 保护 图像 增量 学习方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010781900.X/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top