[发明专利]一种基于混合深度神经网络的学生辍课预测方法在审

专利信息
申请号: 202010925380.5 申请日: 2020-09-06
公开(公告)号: CN112116137A 公开(公告)日: 2020-12-22
发明(设计)人: 刘铁园;张艳;常亮;古天龙;李龙 申请(专利权)人: 桂林电子科技大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/20;G06N3/04;G06N3/08
代理公司: 暂无信息 代理人: 暂无信息
地址: 541004 广西*** 国省代码: 广西;45
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及机器学习、深度学习及数据挖掘等技术领域,具体是涉及一种基于混合深度神经网络的学生辍课预测方法。本发明考虑到时间序列数据,进行了细粒度划分,并使用One‑hot编码规则和特征工程相结合,构建行为特征矩阵,有助于提高预测的准确性,并且使用一种新建的卷积神经网络(CNN),进行局部关系特征提取。考虑到行为之间的序列关系,以及模型本身的影响,最后通过门控循环单元(GRU)网络进行时间序列关系特征提取,通过softmax层进行最后的预测任务,以此提高辍课预测的精确度。本发明使用三层的GRU提取行为矩阵之间存在的潜在具有时序关系的行为特征。
搜索关键词: 一种 基于 混合 深度 神经网络 学生 预测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010925380.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top