[发明专利]一种基于混合深度神经网络的学生辍课预测方法在审
申请号: | 202010925380.5 | 申请日: | 2020-09-06 |
公开(公告)号: | CN112116137A | 公开(公告)日: | 2020-12-22 |
发明(设计)人: | 刘铁园;张艳;常亮;古天龙;李龙 | 申请(专利权)人: | 桂林电子科技大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/20;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 541004 广西*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及机器学习、深度学习及数据挖掘等技术领域,具体是涉及一种基于混合深度神经网络的学生辍课预测方法。本发明考虑到时间序列数据,进行了细粒度划分,并使用One‑hot编码规则和特征工程相结合,构建行为特征矩阵,有助于提高预测的准确性,并且使用一种新建的卷积神经网络(CNN),进行局部关系特征提取。考虑到行为之间的序列关系,以及模型本身的影响,最后通过门控循环单元(GRU)网络进行时间序列关系特征提取,通过softmax层进行最后的预测任务,以此提高辍课预测的精确度。本发明使用三层的GRU提取行为矩阵之间存在的潜在具有时序关系的行为特征。 | ||
搜索关键词: | 一种 基于 混合 深度 神经网络 学生 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010925380.5/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理