[发明专利]一种基于双边滤波器和余量去卷积的图像复原方法无效
申请号: | 200910102322.6 | 申请日: | 2009-08-28 |
公开(公告)号: | CN101639938A | 公开(公告)日: | 2010-02-03 |
发明(设计)人: | 董文德;冯华君;徐之海;李奇 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06T5/50 | 分类号: | G06T5/50 |
代理公司: | 杭州天勤知识产权代理有限公司 | 代理人: | 胡红娟 |
地址: | 310027浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 双边 滤波器 余量 卷积 图像 复原 方法 | ||
技术领域
本发明涉及计算机图像处理技术,尤其涉及一种图像去模糊的方法。
背景技术
在拍照过程中,由于拍照者手抖动或拍摄物体高速运动等原因,造成图像模糊,为了避免产生模糊,通常的方法是缩短曝光时间或采用三脚架拍摄,然而前者在弱光照条件下会产生严重的噪声,后者则太笨重,于是如何利用软件复原模糊图像就显得尤为重要,是现代图像处理领域的热点。图像模糊的逆过程称为图像去卷积,其目的就是从模糊图像逆向得到清晰图像,它在天文拍摄、医学成像等领域具有重要意义。
图像去卷积起源于天文观测,较早的算法包括标准RL算法、维纳滤波等,后来又出现了总体变分正则化算法以及小波域的图像复原算法等,然而即使模糊核已知,由于吉布斯现象的存在将导致振铃效应,影响复原效果,如RL算法随着迭代次数的增加图像细节逐步得到恢复,振铃效应也会越来越明显,总体变分正则算法虽然在一定程度上压制了振铃,但损失了图像细节,因此如何在保持图像细节的同时压制振铃是图像复原的关键。
模糊核对图像复原至关重要,在某些情况下模糊核是可求的,如在天文拍摄时,可将星体视为点光源,其像即为模糊核,又如有些学者提出了基于自然图像梯度分布求模糊核、采用两幅图像求模糊核以及利用图像序列求模糊核的方法,这些方法为图像复原奠定了基础。
根据算法所需信息可将图像去卷积算法分为三类,即盲复原算法、已知模糊核的复原算法和基于多幅图像的复原算法。
盲复原是在模糊核未知的情况下仅从单幅图像复原出原图像的方法,由于已知信息不足,现有的盲复原算法通常假设待求图像和模糊核的分布服从某种规律,然后在贝叶斯框架下得到复原结果,所以如何对图像和模糊核的分布做出合理假设就成为图像复原的关键。近年来这方面的研究取得了一定进展,如先假设待求图像服从自然图像梯度分布规律,并在尺度空间上求得模糊核,然后用标准RL算法得到复原结果,该方法较传统算法的优势在于能够处理模糊核较复杂的情况;又如在最大后验框架下采用对图像噪声建模和引入局部约束压制振铃的方法可得到高质量的复原图像,优于传统的盲复原算法。
已知模糊核的复原算法又称为非盲复原算法,由于模糊核已知,求解相对简单,所以涌现出了众多算法,其中一些经典算法一直沿用至今,如RL、维纳滤波算法等,它们在运行效率,图像恢复质量上都有很好的表现,然而吉布斯现象导致的振铃效应一直成为困扰这些经典算法的难题,为了降低振铃效应的影响,科研工作者提出了许多新算法,如总体变分正则化算法,将稀疏自然图像约束与共轭梯度法相结合的算法,根据联合双边/双边滤波器的思想对标准RL算法进行改进,并在尺度空间上复原图像的算法等。此外,随着小波技术的发展,还出现了许多基于小波域的图像复原技术。
由于在实际工作中单幅图像包含的信息有限,所以要获得准确的模糊核并非易事,于是又出现了基于多幅图像的复原算法,如基于欠曝图像和模糊图像的复原算法;基于两幅模糊图像的复原算法以及基于序列图像的复原算法。
发明内容
本发明提出了一种基于双边滤波器和余量去卷积的图像复原算法,结合了标准RL算法、双边滤波器和余量去卷积算法的特点,通过多次滤波、重模糊和细节复原得到清晰图像,该算法能有效抑制迭代过程中产生的中、高频振铃,保持丰富的图像细节,步骤如下:
(1)根据待复原图像及其已知模糊核,采用标准RL算法做高次迭代,得到含有振铃的复原图像;
(2)采用双边滤波器对含有振铃的复原图像实施滤波操作,得到消除振铃后的复原图像;
(3)用步骤(1)所述的已知模糊核对消除振铃后的复原图像进行卷积处理,得到重模糊图像;
(4)利用步骤(3)所得的重模糊图像及待复原图像采用余量去卷积得到复原图像细节,将复原图像细节与步骤(2)的消除振铃后的复原图像相加得到新的含有振铃的复原图像,并将其作为步骤(2)中双边滤波器的输入图像;
(5)多次重复步骤(2)~步骤(4)得到最终复原图像。
图像模糊过程可用如下的数学模型表述:
其中,B表示待复原图像,I表示原图像,h表示模糊核,表示卷积运算,n表示噪声。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/200910102322.6/2.html,转载请声明来源钻瓜专利网。