[发明专利]眼电信号的特征提取与识别方法无效
申请号: | 200910117157.1 | 申请日: | 2009-06-26 |
公开(公告)号: | CN101599127A | 公开(公告)日: | 2009-12-09 |
发明(设计)人: | 吕钊;吴小培;张磊;张道信;郭晓静;李密 | 申请(专利权)人: | 安徽大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06F3/01;A61B5/0496;A61B3/113 |
代理公司: | 安徽省合肥新安专利代理有限责任公司 | 代理人: | 何梅生 |
地址: | 230031安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 电信号 特征 提取 识别 方法 | ||
技术领域
本发明涉及属于生物医学与信息学交叉领域,更具体地说是一种对眼电信号所进行的特征提取与识别方法。
背景技术
眼睛是心灵的窗口,透过这个窗口我们可以探究人的许多心理活动的规律。人类的信息加工在很大程度上依赖于视觉,来自外界的信息约有80%~90%是通过人的眼睛获得的。因此对于眼球运动的研究被认为是视觉信息加工研究中最有效的手段。国内、外许多有关眼电的研究证明,眼球中角膜部分是一个正电极,视网膜部分是一个负电极,这种在视网膜色素上皮和光感受器细胞之间存在的视网膜静电位信号被称为electro-oculogram,即EOG信号。当眼睛注视前方不动时,可以记录到稳定的基准电位,眼睛沿水平方向或垂直方向每运动1°,将分别会产生约16uV和14uV的电压;由于眼电信号相对于心电、脑电等信号而言,其幅度较强,约为15-200uV,所以,该信号可以被放置在眼眶周围的电极直接检测到。
目前,许多关于眼电特征提取及眼电信号识别的算法被相继提出。眼电信号的特征一般采用以下参数:眼电信号的幅值、持续时间、眼电信号的间隔时间、眼电信号能量等,识别时通过设置不同的检测门限来实现对输入眼电信号的识别。上述眼电特征提取及眼电信号识别算法虽然易于实现,但是不可以避免地存在着如下缺点:
1、检测准确率不高。由于上述眼电特征提取及眼电信号识别算法没有充分考虑到眼电信号的可变性,即检测电极位置不同或者不同使用者进行相同的眼部动作时,眼电信号输出的幅度、峰值、眼球转动速度等参数不同;另一方面,由于眼电信号易受到外界信号如电物体的静电、电磁噪声,还有人体肌电信号、心电信号等噪声的干扰,因此,检测门限的选择决定了算法识别的准确率。在实际使用中,一个理想的检测门限往往难以获得,所以,上述方法不能保证眼电信号识别的准确率。
2、不能在噪声条件下使用。当电极接触不良或者受到较强的外部噪声电磁干扰时,上述算法无法根据所提取出的特征对眼电信号进行识别,从而导致算法失效。
发明内容
本发明是为避免上述现有技术所存在的不足之处提供一种具有较高识别准确率、有一定抗干扰能力及较强应用性价值的眼电信号的特征提取与识别方法。
本发明解决技术问题采用如下技术方案:
本发明眼电信号的特征提取与识别方法的特点是包括眼电信号预处理、眼电信号特征参数提取及眼电信号模式识别三个阶段;
所述眼电信号预处理阶段是对眼电信号进行端点检测和带通滤波;
所述眼电信号特征参数提取阶段对眼电信号进行分帧、加窗,将连续的眼电信号转化为多段短时眼电信号后,提取出随时间变化的眼电特征参数序列;
所述眼电信号模式识别阶段通过动态时间规整法DTW,将输入的眼电特征参数序列依次与模板库中的每个模板进行相似度的比较,以判断操作者相应的眼部运动,包括:不同眨眼次数、向左扫视、向右扫视、向上扫视和向下扫视。
所述模板库的建立:使用者在使用之前采用不同的眼部动作,包括:不同眨眼次数、向左扫视、向右扫视、向上扫视和向下扫视分别进行训练,每个动作对应得到一个参考模板,以所有不同动作的参考模板的集合建立模板库。
本发明眼电信号的特征提取与识别方法的特点也在于:
所述眼电信号预处理阶段的端点检测是检测眼部不同动作对应的眼电信号的起始点和终止点;
所述眼电信号预处理阶段的带通滤波截止频率为0.159-10Hz。
本发明眼电信号的特征提取与识别方法的特点也在于:
所述眼电信号特征参数提取阶段的分帧和加窗是用一个有限长度的窗序列截取一段眼电信号,将连续的眼电信号转化为多段短时眼电信号;
所述提取特征参数是对眼电信号分帧、加窗后所形成的多帧短时信号通过自相关分析,提取出线性预测系数LPC;对所述线性预测系数LPC求取其线性预测倒谱系数LPCC作为特征参数;进一步对所述线性预测倒谱系数LPCC求取一阶差分信号ΔLPCC;最终将所述线性预测倒谱系数LPCC与一阶差分信号ΔLPCC合并组成一个眼电信号特征参数。
眼电信号的特征提取与识别方法的特点也在于:所述动态时间规整法DTW是在计算待识别的眼电信号与模板库中每个模板的相似度时,将所获取的操作者眼部动作的眼电信号波形进行非线性的伸长或压缩,直至所述眼电信号波形与所述模板库中参考模板的长度相一致。
本发明眼电信号的特征提取与识别方法的特点还在于按以下步骤进行:
a、训练
a1、将眼电传感器分别放置在使用者的颢侧、眼眉正上方、乳凸处及额头正中间位置;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽大学,未经安徽大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/200910117157.1/2.html,转载请声明来源钻瓜专利网。