[发明专利]超临界CO2分步提取及分离薏苡仁酯和薏苡仁油的方法有效
申请号: | 201010203671.X | 申请日: | 2010-06-18 |
公开(公告)号: | CN101863764A | 公开(公告)日: | 2010-10-20 |
发明(设计)人: | 李晔;姚渭溪 | 申请(专利权)人: | 福建仙芝楼生物科技有限公司 |
主分类号: | C07C69/58 | 分类号: | C07C69/58;C07C67/58;C11B1/10 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 350002 福建省福州*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 临界 co sub 分步 提取 分离 薏苡仁 方法 | ||
1.一种超临界CO2分步提取及分离薏苡仁酯和薏苡仁油的方法,其特征在于它包括以下步骤:
1)粉碎制粒:将已脱壳去杂质的薏苡仁,粉碎为60-200目的细粉,倒入搅拌机内,一边搅拌一边加入占原料重量40%--80%的纯净水,用20目筛进行湿法制粒,在55-60℃进行烘干,控制水分在5%以内;
2)整粒过筛:干燥成型的薏苡仁颗粒用10--20目筛整粒,再用50目筛将细粉筛出,筛出细粉返回重新制粒;
3)超临界CO2分步提取分段收集:二氧化碳钢瓶(1)、二氧化碳储罐(2)、提取釜(3)、分离釜(4)依次相接,其上方有管道(6)用于CO2及薏苡仁油及薏苡仁酯通过,二氧化碳由二氧化碳钢瓶(1)到二氧化碳储罐(2)经热交换器I(9)、高压泵(10)、热交换器II(11)依次进入提取釜(3)、分离釜(4)后,回到二氧化碳储罐(2)完成一个工作循环,将经过整粒过筛的薏苡仁粉粒放入24L提取釜的料篮内,釜内通入超临界CO2,压力在10-30MPa之间分步增加,提取温度在40-60℃;提取釜下方有阀(12),用于控制CO2的通入,溶解有薏苡仁油及薏苡仁酯的超临界CO2由提取釜(3),经阀门(7)降压进入分离釜(4),釜内压力在5-7MPa,温度40-60℃,CO2流量100-130L/hr,按提取时间分段收集,0.5-1.0hr/段,分离釜(4)的下方为收集阀(13),分步提取与分段收集总时间为5-5.5hr。
2.根据权利要求1所述的一种超临界CO2分步提取及分离薏苡仁酯和薏苡仁油的方法,其特征在于粉碎制粒时,粒子的最佳水分在3-4%。
3.根据权利要求1所述的一种超临界CO2分步提取及分离薏苡仁酯和薏苡仁油的方法,其特征在于超临界CO2分步提取的提取压力分别为10、15、20、25、30MPa分步提高,1hr/每步,分段收集按0.5hr/段收集,在10MPa或15MPa刚开始提取时,首先是脂溶性杂质和水分被提取出来,随着压力逐步提高,薏苡仁酯和薏苡仁油也被先后提取出来,在30MPa下继续提取时,薏苡仁油减少,一些低极性杂质增加而出现棕色油,当出现棕色油或薏苡仁油的提取率很低时就可停止操作。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福建仙芝楼生物科技有限公司,未经福建仙芝楼生物科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201010203671.X/1.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法