[发明专利]融合分类与全局索引的图像检索方法和图像检索系统无效

专利信息
申请号: 201110423143.X 申请日: 2011-12-16
公开(公告)号: CN102521366A 公开(公告)日: 2012-06-27
发明(设计)人: 金海;郑然;章勤;周挺;朱磊;郭明瑞 申请(专利权)人: 华中科技大学
主分类号: G06F17/30 分类号: G06F17/30
代理公司: 华中科技大学专利中心 42201 代理人: 朱仁玲
地址: 430074 湖北*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 融合 分类 全局 索引 图像 检索 方法 检索系统
【说明书】:

技术领域

发明涉及基于内容的图像垂直检索领域,更具体地说,本发明涉及一种融合分类与全局索引的图像检索方法和图像检索系统。

背景技术

现有的基于内容的图像检索,主要的检索方式有,基于分类的检索、基于聚类的检索与基于全局索引的检索。基于分类的检索是预先把数据库中的图片分类,检索时首先获取查询图片的类别,然后再类别中检索出相似的图片;基于聚类的检索是对所有图片特征进行聚类,形成聚类中心,检索时待查询图片首先查找距离最近的聚类中心,然后在该聚类中心对应的图片集合中查找相似的图片;基于全局索引的检索是对所有图片特征建立索引,待查询图片在索引上查找相似图片的集合,然后返回集合中相似的图片。

然而,现有基于内容的图像检索方法存在以下问题:采用聚类方式时,由于聚类与索引损失了特征向量的精度,导致查询准确率低;采用分类方式时,如果待查询图片分类错误时,查准率与查全率都会大大降低;采用索引方式时,在图像的特征向量上建立的索引,其查询速度比较慢,会导致系统的检索耗时。

发明内容

本发明的目的在于提供一种融合分类与全局索引的图像检索方法,其检索是采用了图片的语义特征,从而提高了检索系统的查准率,并根据待查询图片的分类标号融合分类与全局索引两种检索方式,弥补了分类错误时的查全率低下的问题,且分类模型保证大部分图片采用分类方式检索,检索范围大大缩小,小部分图片采用索引的方式检索,从而整体提高了系统的检索速度。

本发明是通过以下技术方案实现的:

一种融合分类与全局索引的图像检索方法,包括如下步骤:

a)下载图片以建立图片库,

b)对图片库中的图片按照形状进行分类,对于每个分类,从图片库中挑选出具有代表性的样本图片,形成样本库。提取样本库中所有图片的分类底层特征描述符,并在底层特征描述符上利用支持向量机进行训练,以得到每个分类的判别式,并且所有分类的判别式形成分类模型,

c)利用分类模型对图片库中所有图片进行分类,以得到图片的类别标号与语义特征,

d)提取图片库中所有图片的颜色特征和形状特征,并将颜色特征、形状特征以及语义特征结合为特征库,

e)关联特征库与图片库以及类别标号以形成记录表,

f)利用局部敏感哈希方法建立特征库的索引,

g)接收来自用户的图片查询请求,提取待查询图片的颜色特征和形状特征,使用分类模型对待查询图片进行处理,以得到待查询图片的类别标号与语义特征,

h)判断待查询图片的类别标号是大于还是等于,

i)若待查询图片的类别标号大于,则根据记录表从特征库中加载与待查询图片具有相同类别标号的特征集合,然后转入步骤k,

j)若待查询图片的类别标号等于,则根据待查询图片的颜色特征、形状特征以及语义特征在索引上进行查询,以得到特征库中的特征集合,

k)对特征集合与待查询图片的颜色特征、形状特征以及语义特征进行相似度计算,并根据计算得到的相似度值进行排序,以得到与记录表对应的排序结果,

l)根据排序结果,从记录表中加载图片库中的图片,并把加载结果展示给用户。

上述步骤c)包括子步骤:提取样本库的底层特征描述符,采用卡方内核算法对底层特征描述符进行高维映射处理,以得到高维映射向量,采用支持向量机对高维映射向量进行训练,以得到样本库中每个类别的判别式Wx+b,其中w、b为支持向量机训练得出的参数,x为高维映射向量。

本发明的另一个目的在于提供一种融合分类与全局索引的图像检索系统,其检索是采用了图片的语义特征,从而提高了检索系统的查准率,并根据待查询图片的分类标号融合分类与全局索引两种检索方式,弥补了分类错误时的查全率低下的问题,且分类模型保证大部分图片采用分类方式检索,检索范围大大缩小,小部分图片采用索引的方式检索,从而整体提高了系统的检索速度。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201110423143.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top