[发明专利]一种基于回型沟道工艺的混合晶面SOI BiCMOS集成器件及制备方法有效
申请号: | 201210244288.8 | 申请日: | 2012-07-16 |
公开(公告)号: | CN102738160A | 公开(公告)日: | 2012-10-17 |
发明(设计)人: | 胡辉勇;宋建军;张鹤鸣;王斌;吕懿;宣荣喜;舒斌;郝跃 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | H01L27/06 | 分类号: | H01L27/06;H01L21/8249 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 710065 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 沟道 工艺 混合 soi bicmos 集成 器件 制备 方法 | ||
1.一种基于回型沟道工艺的混合晶面SOI BiCMOS集成器件,其特征在于,所述双应变平面BiCMOS器件采用SOI SiGe HBT器件,应变Si平面沟道NMOS器件和应变Si垂直沟道PMOS器件。
2.根据权利要求1所述的基于回型沟道工艺的混合晶面SOI BiCMOS集成器件,其特征在于,NMOS器件导电沟道为应变Si材料,沿沟道方向为张应变。
3.根据权利要求1所述的基于回型沟道工艺的混合晶面SOI BiCMOS集成器件,其特征在于,PMOS器件应变Si沟道为垂直沟道,沿沟道方向为压应变,并且为回型结构。
4.根据权利要求1所述的基于回型沟道工艺的混合晶面SOI BiCMOS集成器件,其特征在于,NMOS器件制备在晶面为(100)的SOI衬底上,PMOS器件制备在晶面为(110)的衬底上。
5.根据权利要求1所述的基于回型沟道工艺的混合晶面SOI BiCMOS集成器件,其特征在于,SiGe HBT器件基区为应变SiGe材料。
6.一种基于回型沟道工艺的混合晶面SOI BiCMOS集成器件的制备方法,其特征在于,包括如下步骤:
第一步、选取两片Si片,一块是N型掺杂浓度为1~5×1015cm-3的Si(110)衬底片,作为下层的基体材料,另一块是P型掺杂浓度为1~5×1015cm-3的Si(100)衬底片,作为上层的基体材料;对两片Si片表面进行氧化,氧化层厚度为0.5~1μm,采用化学机械抛光(CMP)工艺对两个氧化层表面进行抛光;
第二步、对上层基体材料中注入氢,并将两片Si片氧化层相对置于超高真空环境中在350~480℃的温度下实现键合;将键合后的Si片温度升高100~200℃,使上层基体材料在注入的氢处断裂,对上层基体材料多余的部分进行剥离,保留100~200nm的Si材料,并在其断裂表面进行化学机械抛光(CMP),形成SOI衬底;
第三步、利用化学汽相淀积(CVD)的方法,在600~750℃,在衬底上生长一层厚度为1.8~2.6μm的N型Si外延层,作为集电区,该层掺杂浓度为1×1016~1×1017cm-3;
第四步、利用化学汽相淀积(CVD)的方法,在600~750℃,在衬底上生长一层厚度为20~60nm的SiGe层,作为基区,该层Ge组分为15~25%,掺杂浓度为5×1018~5×1019cm-3;
第五步、利用化学汽相淀积(CVD)的方法,在600~750℃,在衬底上生长一层厚度为100~200nm的N型Si层,作为发射区,该层掺杂浓度为1×1017~5×1017cm-3;
第六步、利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层厚度为200~300nm的SiO2层和一层厚度为100~200nm的SiN层;光刻器件间深槽隔离区域,在深槽隔离区域干法刻蚀出深度为5μm的深槽,利用化学汽相淀积(CVD)方法,在600~800℃,在深槽内填充SiO2;
第七步、用湿法刻蚀掉表面的SiO2和SiN层,利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层厚度为200~300nm的SiO2层和一层厚度为100~200nm的SiN层;光刻集电区浅槽隔离区域,在浅槽隔离区域干法刻蚀出深度为180~300nm的浅槽,利用化学汽相淀积(CVD)方法,在600~800℃,在浅槽内填充SiO2;
第八步、用湿法刻蚀掉表面的SiO2和SiN层,利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层厚度为200~300nm的SiO2层和一层厚度为100~200nm的SiN层;光刻基区浅槽隔离区域,在浅槽隔离区域干法刻蚀出深度为105~205nm的浅槽,利用化学汽相淀积(CVD)方法,在600~800℃,在浅槽内填充SiO2;
第九步、用湿法刻蚀掉表面的SiO2和SiN层,利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层厚度为300~500nm的SiO2层;光刻集电极区域,对该区域进行N型杂质注入,使集电极接触区掺杂浓度为1×1019~1×1020cm-3,形成集电极接触区域;
第十步、光刻基极区域,对该区域进行P型杂质注入,使基极接触区掺杂浓度为1×1019~1×1020cm-3,形成基极接触区域;光刻发射极区域,对该区域进行N型杂质注入,使发射极接触区掺杂浓度为1×1019~1×1020cm-3,形成发射极接触区域;并对衬底在950~1100℃温度下,退火15~120s,进行杂质激活,形成SiGe HBT器件;
第十一步、光刻PMOS器件有源区,用干法刻蚀工艺,在PMOS器件有源区,刻蚀出深度为5~6μm的深槽。利用化学汽相淀积(CVD)方法,在600~750℃,在PMOS器件有源区(即深槽)沿(110)晶面选择性外延生长七层材料:第一层是厚度为2.2~2.4μm的P型Si缓冲层,掺杂浓度为1~5×1015cm-3;第二层是厚度为2.4~2.7μm的P型SiGe渐变层,底部Ge组分是0%,顶部Ge组分是15~25%,掺杂浓度为1~5×1018cm-3;第三层是Ge组分为15~25%,厚度为200~400nm的P型SiGe层,掺杂浓度为5×1019~1×1020cm-3,作为PMOS器件的漏区;第四层是厚度为3~5nm的P型应变Si层,掺杂浓度为1~5×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);第五层是厚度为22~45nm的N型应变Si层,掺杂浓度为5×1016~5×1017cm-3,作为PMOS器件的沟道;第六层是厚度为3~5nm的P型应变Si层,掺杂浓度为1~5×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);第七层是Ge组分为15~25%,厚度为200~400nm的P型SiGe,掺杂浓度为5×1019~1×1020cm-3,作为PMOS器件的有源区;
第十二步、利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层SiO2;光刻NMOS器件有源区,在NMOS器件有源区,刻蚀出深度为1.8~2.7μm的深槽;利用化学汽相淀积(CVD)方法,在600~750℃,在NMOS器件有源区沿(100)晶面选择性外延生长四层材料:第一层是厚度为200~400nm的P型Si缓冲层,掺杂浓度为1~5×1015cm-3;第二层是厚度为1.4~1.9μm的P型SiGe渐变层,底部Ge组分是0%,顶部Ge组分是15~25%,掺杂浓度为1~5×1015cm-3;第三层是Ge组分为15~25%,厚度为200~400nm的P型SiGe层,掺杂浓度为5×1016~5×1017cm-3;第四层是厚度为10~15nm的P型应变Si层,掺杂浓度为5×1016~5×1017cm-3作为NMOS器件的沟道;
第十三步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻PMOS器件源漏隔离区,利用干法刻蚀工艺,在该区域刻蚀出深度为0.3~0.5μm的浅槽;再利用化学汽相淀积(CVD)方法,在600~800℃,在浅槽内填充SiO2,形成浅槽隔离;
第十四步、光刻漏沟槽窗口,利用干法刻蚀工艺,在PMOS器件漏区域刻蚀出深度为0.4~0.7μm漏沟槽;利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积掺杂浓度为1~5×1020cm-3的P型Poly-Si,将PMOS器件漏沟槽填满,再去除掉PMOS器件漏沟槽表面以外的Poly-Si,形成漏连接区;
第十五步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻栅沟槽窗口,利用干法刻蚀工艺,在PMOS器件栅区域刻蚀出深度为0.4~0.7μm栅沟槽;利用原子层化学汽相淀积(ALCVD)方法,在300~400℃,在衬底表面淀积厚度为6~10nm的高介电常数的HfO2层,作为PMOS器件的栅介质层;利用化学汽相淀积(CVD)方法,在600~800℃,在栅沟槽中淀积掺杂浓度为1~5×1020cm-3的P型Poly-SiGe,Ge组分为10~30%,将PMOS器件栅沟槽填满;光刻栅介质和栅Poly-SiGe,形成栅极和源极,最终形成PMOS器件结构;
第十六步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻NMOS器件有源区,利用原子层化学汽相淀积(ALCVD)方法,在300~400℃,在NMOS器件有源区淀积厚度为6~10nm的高介电常数的HfO2层,作为NMOS器件的栅介质层;利用化学汽相淀积(CVD)方法,在600~800℃,在NMOS器件有源区淀积厚度为200~300nm的P型Poly-SiGe,掺杂浓度为1~5×1020cm-3,Ge组分为10~30%,光刻栅介质和栅Poly-SiGe,形成栅极;利用离子注入工艺,对NMOS器件有源区进行N型离子注入,形成N型轻掺杂源漏结构(N-LDD),掺杂浓度均为1~5×1018cm-3;
第十七步、利用化学汽相淀积(CVD)方法,在600~800℃,在整个衬底淀积一厚度为3~5nm的SiO2层,利用干法刻蚀工艺,刻蚀掉表面的SiO2,形成NMOS器件栅极侧墙,利用离子注入工艺,对NMOS器件有源区进行N型离子注入,自对准生成NMOS器件的源区和漏区,并快速热退火,使NMOS器件源区和漏区的掺杂浓度达到1~5×1020cm-3;
第十八步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻引线窗口,在整个衬底上溅射一层金属镍(Ni),合金,自对准形成金属硅化物,清洗表面多余的金属,形成金属接触;光刻引线,构成MOS导电沟道为22~45nm的基于回型沟道工艺的混合晶面SOI BiCMOS集成器件。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201210244288.8/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种离子液体电解制备微纳米铝粉的方法
- 下一篇:原子光谱通信仪
- 同类专利
- 专利分类
H01L 半导体器件;其他类目中不包括的电固体器件
H01L27-00 由在一个共用衬底内或其上形成的多个半导体或其他固态组件组成的器件
H01L27-01 .只包括有在一公共绝缘衬底上形成的无源薄膜或厚膜元件的器件
H01L27-02 .包括有专门适用于整流、振荡、放大或切换的半导体组件并且至少有一个电位跃变势垒或者表面势垒的;包括至少有一个跃变势垒或者表面势垒的无源集成电路单元的
H01L27-14 . 包括有对红外辐射、光、较短波长的电磁辐射或者微粒子辐射并且专门适用于把这样的辐射能转换为电能的,或适用于通过这样的辐射控制电能的半导体组件的
H01L27-15 .包括专门适用于光发射并且包括至少有一个电位跃变势垒或者表面势垒的半导体组件
H01L27-16 .包括含有或不含有不同材料结点的热电元件的;包括有热磁组件的