[发明专利]一种基于回型沟道工艺的混合晶面SOI BiCMOS集成器件及制备方法有效

专利信息
申请号: 201210244288.8 申请日: 2012-07-16
公开(公告)号: CN102738160A 公开(公告)日: 2012-10-17
发明(设计)人: 胡辉勇;宋建军;张鹤鸣;王斌;吕懿;宣荣喜;舒斌;郝跃 申请(专利权)人: 西安电子科技大学
主分类号: H01L27/06 分类号: H01L27/06;H01L21/8249
代理公司: 暂无信息 代理人: 暂无信息
地址: 710065 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 沟道 工艺 混合 soi bicmos 集成 器件 制备 方法
【权利要求书】:

1.一种基于回型沟道工艺的混合晶面SOI BiCMOS集成器件,其特征在于,所述双应变平面BiCMOS器件采用SOI SiGe HBT器件,应变Si平面沟道NMOS器件和应变Si垂直沟道PMOS器件。

2.根据权利要求1所述的基于回型沟道工艺的混合晶面SOI BiCMOS集成器件,其特征在于,NMOS器件导电沟道为应变Si材料,沿沟道方向为张应变。

3.根据权利要求1所述的基于回型沟道工艺的混合晶面SOI BiCMOS集成器件,其特征在于,PMOS器件应变Si沟道为垂直沟道,沿沟道方向为压应变,并且为回型结构。

4.根据权利要求1所述的基于回型沟道工艺的混合晶面SOI BiCMOS集成器件,其特征在于,NMOS器件制备在晶面为(100)的SOI衬底上,PMOS器件制备在晶面为(110)的衬底上。

5.根据权利要求1所述的基于回型沟道工艺的混合晶面SOI BiCMOS集成器件,其特征在于,SiGe HBT器件基区为应变SiGe材料。

6.一种基于回型沟道工艺的混合晶面SOI BiCMOS集成器件的制备方法,其特征在于,包括如下步骤:

第一步、选取两片Si片,一块是N型掺杂浓度为1~5×1015cm-3的Si(110)衬底片,作为下层的基体材料,另一块是P型掺杂浓度为1~5×1015cm-3的Si(100)衬底片,作为上层的基体材料;对两片Si片表面进行氧化,氧化层厚度为0.5~1μm,采用化学机械抛光(CMP)工艺对两个氧化层表面进行抛光;

第二步、对上层基体材料中注入氢,并将两片Si片氧化层相对置于超高真空环境中在350~480℃的温度下实现键合;将键合后的Si片温度升高100~200℃,使上层基体材料在注入的氢处断裂,对上层基体材料多余的部分进行剥离,保留100~200nm的Si材料,并在其断裂表面进行化学机械抛光(CMP),形成SOI衬底;

第三步、利用化学汽相淀积(CVD)的方法,在600~750℃,在衬底上生长一层厚度为1.8~2.6μm的N型Si外延层,作为集电区,该层掺杂浓度为1×1016~1×1017cm-3

第四步、利用化学汽相淀积(CVD)的方法,在600~750℃,在衬底上生长一层厚度为20~60nm的SiGe层,作为基区,该层Ge组分为15~25%,掺杂浓度为5×1018~5×1019cm-3

第五步、利用化学汽相淀积(CVD)的方法,在600~750℃,在衬底上生长一层厚度为100~200nm的N型Si层,作为发射区,该层掺杂浓度为1×1017~5×1017cm-3

第六步、利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层厚度为200~300nm的SiO2层和一层厚度为100~200nm的SiN层;光刻器件间深槽隔离区域,在深槽隔离区域干法刻蚀出深度为5μm的深槽,利用化学汽相淀积(CVD)方法,在600~800℃,在深槽内填充SiO2

第七步、用湿法刻蚀掉表面的SiO2和SiN层,利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层厚度为200~300nm的SiO2层和一层厚度为100~200nm的SiN层;光刻集电区浅槽隔离区域,在浅槽隔离区域干法刻蚀出深度为180~300nm的浅槽,利用化学汽相淀积(CVD)方法,在600~800℃,在浅槽内填充SiO2

第八步、用湿法刻蚀掉表面的SiO2和SiN层,利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层厚度为200~300nm的SiO2层和一层厚度为100~200nm的SiN层;光刻基区浅槽隔离区域,在浅槽隔离区域干法刻蚀出深度为105~205nm的浅槽,利用化学汽相淀积(CVD)方法,在600~800℃,在浅槽内填充SiO2

第九步、用湿法刻蚀掉表面的SiO2和SiN层,利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层厚度为300~500nm的SiO2层;光刻集电极区域,对该区域进行N型杂质注入,使集电极接触区掺杂浓度为1×1019~1×1020cm-3,形成集电极接触区域;

第十步、光刻基极区域,对该区域进行P型杂质注入,使基极接触区掺杂浓度为1×1019~1×1020cm-3,形成基极接触区域;光刻发射极区域,对该区域进行N型杂质注入,使发射极接触区掺杂浓度为1×1019~1×1020cm-3,形成发射极接触区域;并对衬底在950~1100℃温度下,退火15~120s,进行杂质激活,形成SiGe HBT器件;

第十一步、光刻PMOS器件有源区,用干法刻蚀工艺,在PMOS器件有源区,刻蚀出深度为5~6μm的深槽。利用化学汽相淀积(CVD)方法,在600~750℃,在PMOS器件有源区(即深槽)沿(110)晶面选择性外延生长七层材料:第一层是厚度为2.2~2.4μm的P型Si缓冲层,掺杂浓度为1~5×1015cm-3;第二层是厚度为2.4~2.7μm的P型SiGe渐变层,底部Ge组分是0%,顶部Ge组分是15~25%,掺杂浓度为1~5×1018cm-3;第三层是Ge组分为15~25%,厚度为200~400nm的P型SiGe层,掺杂浓度为5×1019~1×1020cm-3,作为PMOS器件的漏区;第四层是厚度为3~5nm的P型应变Si层,掺杂浓度为1~5×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);第五层是厚度为22~45nm的N型应变Si层,掺杂浓度为5×1016~5×1017cm-3,作为PMOS器件的沟道;第六层是厚度为3~5nm的P型应变Si层,掺杂浓度为1~5×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);第七层是Ge组分为15~25%,厚度为200~400nm的P型SiGe,掺杂浓度为5×1019~1×1020cm-3,作为PMOS器件的有源区;

第十二步、利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层SiO2;光刻NMOS器件有源区,在NMOS器件有源区,刻蚀出深度为1.8~2.7μm的深槽;利用化学汽相淀积(CVD)方法,在600~750℃,在NMOS器件有源区沿(100)晶面选择性外延生长四层材料:第一层是厚度为200~400nm的P型Si缓冲层,掺杂浓度为1~5×1015cm-3;第二层是厚度为1.4~1.9μm的P型SiGe渐变层,底部Ge组分是0%,顶部Ge组分是15~25%,掺杂浓度为1~5×1015cm-3;第三层是Ge组分为15~25%,厚度为200~400nm的P型SiGe层,掺杂浓度为5×1016~5×1017cm-3;第四层是厚度为10~15nm的P型应变Si层,掺杂浓度为5×1016~5×1017cm-3作为NMOS器件的沟道;

第十三步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻PMOS器件源漏隔离区,利用干法刻蚀工艺,在该区域刻蚀出深度为0.3~0.5μm的浅槽;再利用化学汽相淀积(CVD)方法,在600~800℃,在浅槽内填充SiO2,形成浅槽隔离;

第十四步、光刻漏沟槽窗口,利用干法刻蚀工艺,在PMOS器件漏区域刻蚀出深度为0.4~0.7μm漏沟槽;利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积掺杂浓度为1~5×1020cm-3的P型Poly-Si,将PMOS器件漏沟槽填满,再去除掉PMOS器件漏沟槽表面以外的Poly-Si,形成漏连接区;

第十五步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻栅沟槽窗口,利用干法刻蚀工艺,在PMOS器件栅区域刻蚀出深度为0.4~0.7μm栅沟槽;利用原子层化学汽相淀积(ALCVD)方法,在300~400℃,在衬底表面淀积厚度为6~10nm的高介电常数的HfO2层,作为PMOS器件的栅介质层;利用化学汽相淀积(CVD)方法,在600~800℃,在栅沟槽中淀积掺杂浓度为1~5×1020cm-3的P型Poly-SiGe,Ge组分为10~30%,将PMOS器件栅沟槽填满;光刻栅介质和栅Poly-SiGe,形成栅极和源极,最终形成PMOS器件结构;

第十六步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻NMOS器件有源区,利用原子层化学汽相淀积(ALCVD)方法,在300~400℃,在NMOS器件有源区淀积厚度为6~10nm的高介电常数的HfO2层,作为NMOS器件的栅介质层;利用化学汽相淀积(CVD)方法,在600~800℃,在NMOS器件有源区淀积厚度为200~300nm的P型Poly-SiGe,掺杂浓度为1~5×1020cm-3,Ge组分为10~30%,光刻栅介质和栅Poly-SiGe,形成栅极;利用离子注入工艺,对NMOS器件有源区进行N型离子注入,形成N型轻掺杂源漏结构(N-LDD),掺杂浓度均为1~5×1018cm-3

第十七步、利用化学汽相淀积(CVD)方法,在600~800℃,在整个衬底淀积一厚度为3~5nm的SiO2层,利用干法刻蚀工艺,刻蚀掉表面的SiO2,形成NMOS器件栅极侧墙,利用离子注入工艺,对NMOS器件有源区进行N型离子注入,自对准生成NMOS器件的源区和漏区,并快速热退火,使NMOS器件源区和漏区的掺杂浓度达到1~5×1020cm-3

第十八步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻引线窗口,在整个衬底上溅射一层金属镍(Ni),合金,自对准形成金属硅化物,清洗表面多余的金属,形成金属接触;光刻引线,构成MOS导电沟道为22~45nm的基于回型沟道工艺的混合晶面SOI BiCMOS集成器件。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201210244288.8/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top