[发明专利]阀控恒磁磁流变阻尼器有效
申请号: | 201210401039.5 | 申请日: | 2012-10-19 |
公开(公告)号: | CN102889331A | 公开(公告)日: | 2013-01-23 |
发明(设计)人: | 徐龙河;戚艳红;李忠献 | 申请(专利权)人: | 北京交通大学 |
主分类号: | F16F9/53 | 分类号: | F16F9/53;F16F9/32 |
代理公司: | 北京众合诚成知识产权代理有限公司 11246 | 代理人: | 朱印康 |
地址: | 100044 北京市海淀*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 阀控恒磁磁 流变 阻尼 | ||
技术领域
本发明属于磁流变阻尼器技术领域,特别涉及一种阀控恒磁磁流变阻尼器。
背景技术
振动是一种常见的物理现象,随着科技的不断进步,在建筑结构、交通、机械等领域出现的振动问题引起人们的日益关注。为了有效克服和避免各种不利的振动,国内外学者先后提出了被动式、主动式和半主动式等振动控制系统。半主动控制是目前结构振动控制领域性价比最高、最具应用前景的控制技术,它将主动控制的思想和被动控制策略完美结合,在实施控制的同时节约了控制能源,并同时达到接近主动控制的效果,而且控制过程稳定可靠。
近年来以磁流变液为代表的新型智能材料的应用为半主动控制技术的发展注入了新的活力。磁流变液主要是由非导磁性液体和均匀分散于其中的高磁导率、低磁滞性的微小磁性颗粒组成,为了保证其悬浮稳定性,通常还包括适量的外加剂。在磁场作用下,磁流变液可在瞬间内(10毫秒左右)由流动性能良好的牛顿粘滞流体变为半固体,且这种变化连续、可控、可逆。1948年,美国工程师Rabinow首先发现了这种磁流变效应,并据此设计了磁流变离合器。磁流变阻尼器具备出力大,响应迅速,阻尼力连续可调,结构形式简单,适应范围广泛等诸多优势,研制至今,被公认为是最具发展前景的半主动控制装置之一。
现有基于磁流变阻尼器的半主动控制需要通过传感器采集加速度、速度及位移信号,将这些信号整形、滤波后传输至计算机,计算机是整个控制系统的核心部分,根据采集到的响应信息按照一定的控制算法计算确定最优控制力,根据磁流变阻尼器的结构参数,反算电流并由控制电源施加,使得阻尼器的出力尽可能接近主动最优控制力。现有基于磁流变阻尼器的土木工程结构减振控制存在以下问题:(1)在工作周期内,由电源提供磁场,地震作用下一旦电源损坏,阻尼器将变成仅具有很小出力能力的被动控制装置工作,基于磁流变阻尼器的智能半主动控制将无法实现。且电源需不定期检查更换,增加了不必要的人力和物力消耗,装置的整体寿命也因此缩短;(2)在控制中,需要根据传感器采集加速度、速度、位移的大小和方向,由计算机运算控制算法判定最优控制力进而得到控制电流的大小,最终由控制电源输出控制,因其结构复杂而增加了装置的不可靠性。
发明内容
鉴于现有技术中存在的问题,本发明的目的在于为了解决现有的基于控制电源和计算机控制算法的磁流变阻尼器,因其结构复杂而增加的不可靠性的问题,提供一种阀控恒磁磁流变阻尼器,其特征在于,阀控恒磁磁流变阻尼器由缸体1,活塞2、活塞杆7、旁通管10和电液比例伺服阀11构成,所述缸体1的腔体为圆柱形,左右两端分别由缸体左端面板和缸体右端面板密封,圆柱形的活塞2和活塞杆7同轴,活塞2固接在活塞杆7的中部,活塞2和活塞杆7与缸体1的腔体同轴,活塞2在缸体1的腔体内,活塞杆7的左右两端分别从缸体左端面板和缸体右端面板的中心圆孔伸出,在缸体左端面板和缸体右端面板的中心圆孔中,用密封环12将活塞杆7与缸体1密封,活塞杆7通过置于缸体左端面板和缸体右端面板的中心圆孔中的轴承13与缸体1构成轴向滑动连接,活塞2的圆柱面与缸体1的腔体壁的圆柱面之间有磁流变液流动间隙9,活塞2将缸体1的腔体分为左腔和右腔,旁通管10的左端与缸体1的左腔连通,旁通管10的右端与缸体1的右腔连通,电液比例伺服阀11串接在旁通管10中,磁流变液8充满缸体1的左腔和右腔以及磁流变液流动间隙9和旁通管10;
所述活塞2由环形永磁铁3、2个导磁环4、环形隔磁体5和2个隔磁环6组成,环形永磁铁3的内径、导磁环4的内径和隔磁环6的内径都与活塞杆7的外径相等,导磁环4的一端为平面,另一端有一个圆形凹面,所述导磁环4另一端的圆形凹面的直径和环形永磁铁3的外径相等,环形隔磁体5的内径与环形永磁铁3外径相等,导磁环4的外径、隔磁环6的外径和环形隔磁体5的外径相等,环形永磁铁3同轴固接在活塞杆7上,环形隔磁体5同轴固接在环形永磁铁3的中部,2个导磁环4凹面相对在环形永磁铁3左右两侧与活塞杆7同轴固接,一个隔磁环6在左边的导磁环4的左侧与活塞杆7同轴固接,另一个隔磁环6在右边的导磁环4的右侧与活塞杆7同轴固接,环形永磁铁3与两侧的导磁环4之间无间隙,环形永磁铁3与环形隔磁体5之间无间隙,环形隔磁体5与两侧的导磁环4之间无间隙,隔磁环6与导磁环4之间无间隙,环形永磁铁3在磁流变液流动间隙9中产生恒定磁场;所述电液比例伺服阀11的控制信号输入端与控制器14的控制信号输出端连接;
所述缸体1和导磁环4的材料为高导磁材料电工纯铁DT4或45号碳素钢;
所述环形隔磁体5、隔磁环6和活塞杆7的材料为极低导磁材料304系列不锈钢;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京交通大学,未经北京交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201210401039.5/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种步进加热炉内用的悬臂辊道
- 下一篇:一种发泡陶瓷保温板及其制备方法