[发明专利]一种可控自形成Cu3Ge/TiN双层扩散阻挡层制备方法有效
申请号: | 201410254176.X | 申请日: | 2014-06-10 |
公开(公告)号: | CN104022075A | 公开(公告)日: | 2014-09-03 |
发明(设计)人: | 刘波;张彦坡;林黎蔚 | 申请(专利权)人: | 四川大学 |
主分类号: | H01L21/768 | 分类号: | H01L21/768 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 610065 四川*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 可控 形成 cu sub ge tin 双层 扩散 阻挡 制备 方法 | ||
技术领域
本发明属于半导体集成电路制造工艺技术领域,涉及一种适用于超深亚微米Cu互连用的可控自形成Cu3Ge/TiN双层扩散阻挡层制备方法。
背景技术
铜(Cu)具有低阻、高抗电迁移性能,已取代铝(Al)成为当今高性能超大规模硅(Si)集成电路主流互连材料,见文献[Delsol R, Jacquemin J P, Gregoire M, Girault V, Federspiel X, Bouyssou R X, Vannier P, Normandon P. Microelectron Eng, 2006; 83: 2377]。但Cu与Si低温下(<300℃)直接反应形成高阻Cu3Si化合物相,且Cu易扩散至Si基体内形成深能级杂质,弱化器件性能,见文献 [B. Liu, Z.X. Song, Y.H. Li, K.W. Xu, Appl. Phys. Lett. 93/17 (3008)]。因此,如何选择适当的具有低电阻率和良好阻隔性能的材料来抑止Cu与Si基体或Si基介质间的相互扩散仍然是工业界和学术界的研究热点问题。
国际半导体发展规划预言,2016年14 nm节点技术要求其互连结构中阻挡层厚度缩减至2 nm,见文献[The international Technology Roadmap for Semiconductors (ITRS), 2003]。传统阻挡层材料如Ta/TaN在此尺度下的稳定性面临巨大挑战。诸多文献研究表明采用Cu基合金(CuM (M=Ti、Mg、Ti、Al、 Ti、 Ru、WN、等))直接沉积在Si或SiO2基体上,通过后续退火处理驱使合金元素扩散至Cu(M)/Si界面并反应形成数纳米厚钝化层,如TiSiyOx,TiOx,TiOx,MgO和AlyOx等的自形成阻挡层技术可能是解决此技术瓶颈的一种有效途径,见文献[Kohama K, Ito K, Tsukimoto S, Mori K, Maekawa K, Murakami M. J. Electron. Mater., 2008, 37: 1148]和[Iijima J, Haneda M , Koike J. Proc IEEE IITC 2006, 155]。然而,在升温初期,尚未达到合金元素扩散所需的热动力学条件(通常大于400℃)时,合金中的Cu原子与Si或SiO2基介质间已发生互扩散反应(<300℃),最终引发器件性能恶化,见文献[Liu A Y, Cohen M L. Phys. Rev. B, 1990, 41(15): 10727]和[Aboelfotoh M O, Svensson B G. Phys. Rev. B, 1991, 44(23): 12742]。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川大学,未经四川大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201410254176.X/2.html,转载请声明来源钻瓜专利网。
- 上一篇:集成亲水膜的烯烃水合方法
- 下一篇:一种新型的平面磨床
- 同类专利
- 专利分类
H01L 半导体器件;其他类目中不包括的电固体器件
H01L21-00 专门适用于制造或处理半导体或固体器件或其部件的方法或设备
H01L21-02 .半导体器件或其部件的制造或处理
H01L21-64 .非专门适用于包含在H01L 31/00至H01L 51/00各组的单个器件所使用的除半导体器件之外的固体器件或其部件的制造或处理
H01L21-66 .在制造或处理过程中的测试或测量
H01L21-67 .专门适用于在制造或处理过程中处理半导体或电固体器件的装置;专门适合于在半导体或电固体器件或部件的制造或处理过程中处理晶片的装置
H01L21-70 .由在一共用基片内或其上形成的多个固态组件或集成电路组成的器件或其部件的制造或处理;集成电路器件或其特殊部件的制造
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法