[发明专利]一种基于干扰估计的电液伺服系统自适应鲁棒控制方法有效

专利信息
申请号: 201510259128.4 申请日: 2015-05-20
公开(公告)号: CN104898428B 公开(公告)日: 2018-04-03
发明(设计)人: 姚建勇;徐张宝;杨贵超 申请(专利权)人: 南京理工大学
主分类号: G05B13/04 分类号: G05B13/04
代理公司: 南京理工大学专利中心32203 代理人: 朱显国
地址: 210000 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 干扰 估计 伺服系统 自适应 鲁棒控制 方法
【说明书】:

技术领域

发明涉及电液伺服系统控制方法,具体涉及一种基于干扰估计的电液伺服系统自适应鲁棒控制方法。

背景技术

电液伺服系统具有控制精度高、响应快速、输出功率大、信号处理灵活,易于实现各种参量的反馈,因此,在负载质量大又要求响应速度快的场合最为适合,其应用已遍及国民经济的各个领域,比如飞机与船舶舵机的控制、雷达与火炮的控制、机床工作台的位置控制、板带轧机的板厚控制、电炉冶炼的电极位置控制、各种飞机车里的模拟台的控制、发电机转速的控制、材料试验机及其他实验机的压力控制等等。然而,为电液伺服系统设计高性能的控制器并不容易。因为设计人员很可能会遇到很多的模型不确定性,包括结构不确定性(参数不确定性)和非结构不确定性等未建模的非线性。这些不确定性因素可能会严重恶化能够取得的控制性能,从而导致低控制精度,极限环震荡,甚至不稳定性。对于已知的非线性,可以通过反馈线性化技术处理。但是,无论动态非线性和参数识别的如何准确的数学模型,都不可能得到实际非线性系统的整个非线性行为和确切的参数,进而进行完美的补偿。始终存在着不能够用明确的函数来模拟的参数偏差和未建模非线性。这些不确定性因素增加了控制系统的设计难度。为了提高电液系统的跟踪性能,设计人员对许多先进的非线性控制器进行了研究,如鲁棒自适应控制,自适应鲁棒控制(ARC),滑模控制等等。特别是自适应鲁棒控制已被应用到多种工程实际中,虽然都取得了优异的跟踪性能,但是这种高精度的控制性能有可能是通过大的反馈增益取得的。

因此如何在取得高精度控制的同时,又能大大降低反馈增益系数是一个急需要解决的问题。

发明内容

本发明为解决电液伺服伺服系统中参数确定性和不确定非线性问题,提出一种基于干扰估计的电液伺服系统自适应鲁棒控制方法。

本发明的上述目的通过独立权利要求的技术特征实现,从属权利要求以另选或有利的方式发展独立权利要求的技术特征。

为达成上述目的,本发明提出一种基于干扰估计的电液伺服系统自适应鲁棒控制方法,该方法包括以下步骤:

步骤一、建立双出杆液压缸位置伺服系统模型为:

其中y为负载位移,m表示惯性负载,PL=P1-P2是负载驱动压力,P1和P2分别为液压缸的两腔压力,A为活塞杆有效工作面积,b代表粘性摩擦系数,f代表其他未建模干扰,包括非线性摩擦、外部干扰以及未建模动态;

液压缸负载压力动态方程为:

其中Vt分别为液压缸两腔总有效容积,Ct为液压缸泄露系数,QL=(Q1+Q2)/2是负载流量,Q1液压缸无杆腔供油流量,Q2为液压缸有杆腔回油流量;QL为伺服阀阀芯位移xv的函数,表示为:

其中为流量伺服阀的增益系数,Cd为伺服阀的流量系数,w为伺服阀的面积梯度;ρ为液压油的密度,Ps为供油压力,Pr为回油压力,sign(xv)表示为:

假设伺服阀阀芯位移正比于控制输入u,即,xv=kiu,其中ki>0是比例系数,u是控制输入电压;

前述等式(3)转化为

其中kt=kqki表示总的流量增益;

定义状态变量那么整个系统转化为下述状态空间形式:

定义未知参数集θ=[θ1234]T,其中θ1=b/m,θ2=4βekt/mVt,θ3=4βe;A2/mVt,θ4=4βeCt/Vt,d(x,t)=f/m表示集中干扰;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京理工大学,未经南京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510259128.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top