[发明专利]指纹识别方法及装置在审

专利信息
申请号: 201510834176.1 申请日: 2015-11-25
公开(公告)号: CN105354560A 公开(公告)日: 2016-02-24
发明(设计)人: 张涛;龙飞;陈志军 申请(专利权)人: 小米科技有限责任公司
主分类号: G06K9/00 分类号: G06K9/00
代理公司: 北京博思佳知识产权代理有限公司 11415 代理人: 林祥
地址: 100085 北京市海淀区清*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 指纹识别 方法 装置
【权利要求书】:

1.一种指纹识别方法,其特征在于,所述方法包括:

对指纹传感器采集的第一指纹图像与存储在数据库中的第二指纹图像通过卷积神经网络进行特征提取,得到所述第一指纹图像对应的第一指纹特征和所述第二指纹图像对应的第二指纹特征,其中,所述第一指纹特征与所述第二指纹特征的维数相同;

对所述第一指纹特征和所述第二指纹特征进行降维处理,分别得到第三指纹特征和第四指纹特征,其中,所述第三指纹特征和所述第四指纹特征的维数相同,且小于所述第一指纹特征和所述第二指纹特征的维数;

根据所述第三指纹特征和所述第四指纹特征的余弦距离确定所述第一指纹图像与所述第二指纹图像是否为同一指纹。

2.根据权利要求1所述的方法,其特征在于,所述卷积神经网络包括至少一个特征提取层和特征映射层,在所述卷积神经网络网络的最后一个特征提取层连接有分类器,所述方法还包括:

将海量的有标签指纹样本输入至所述卷积神经网络,对所述至少一个特征提取层和特征映射层进行训练;

将所述有标签指纹样本通过训练后的所述神经网络进行特征提取,得到所述有标签指纹样本的输出结果;

将所述输出结果输入到所述分类器,对所述分类器进行标定训练。

3.根据权利要求2所述的方法,其特征在于,所述方法还包括:

通过已训练的所述卷积神经网络提取所述有标签指纹样本的第一设定维数的特征参数;

对所述第一设定维数的特征参数进行线性判别式分析LDA训练,得到所述LDA的第二设定维数的投影矩阵。

4.根据权利要求1所述的方法,其特征在于,所述根据所述第三指纹特征和所述第四指纹特征的余弦距离确定所述第一指纹图像与所述第二指纹图像是否为同一指纹,包括:

将所述第三指纹特征和所述第四指纹特征的余弦距离与预设阈值进行比较;

如果所述余弦距离大于所述预设阈值,确定所述第一指纹图像与所述第二指纹图像为同一指纹;

如果所述余弦距离小于或者等于所述预设阈值,确定所述第一指纹图像与所述第二指纹图像为不同指纹。

5.一种指纹识别装置,其特征在于,所述装置包括:

第一提取模块,被配置为对指纹传感器采集的第一指纹图像与存储在数据库中的第二指纹图像通过卷积神经网络进行特征提取,得到所述第一指纹图像对应的第一指纹特征和所述第二指纹图像对应的第二指纹特征,其中,所述第一指纹特征与所述第二指纹特征的维数相同;

降维处理模块,被配置为对所述第一提取模块提取到的所述第一指纹特征和所述第二指纹特征进行降维处理,分别得到第三指纹特征和第四指纹特征,其中,所述第三指纹特征和所述第四指纹特征的维数相同,且小于所述第一指纹特征和所述第二指纹特征的维数;

识别模块,被配置为根据所述降维处理模块降维后的所述第三指纹特征和所述第四指纹特征的余弦距离确定所述第一指纹图像与所述第二指纹图像是否为同一指纹。

6.根据权利要求5所述的装置,其特征在于,所述卷积神经网络包括至少一个特征提取层和特征映射层,在所述卷积神经网络网络的最后一个特征提取层连接有分类器,所述装置还包括:

第一训练模块,被配置为将海量的有标签指纹样本输入至所述卷积神经网络,对所述至少一个特征提取层和特征映射层进行训练;

第二提取模块,被配置为将所述有标签指纹样本通过所述第一训练模块训练后的所述卷积神经网络进行特征提取,得到所述有标签指纹样本的输出结果;

第二训练模块,被配置为将所述第二提取模块得到的所述输出结果输入到所述分类器,对所述分类器进行标定训练。

7.根据权利要求6所述的装置,其特征在于,所述装置还包括:

第三提取模块,被配置为通过已训练的所述卷积神经网络提取所述有标签指纹样本的第一设定维数的特征参数;

第三训练模块,被配置为对所述第三提取模块提取到的所述第一设定维数的特征参数进行线性判别式分析LDA训练,得到所述LDA的第二设定维数的投影矩阵。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于小米科技有限责任公司,未经小米科技有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201510834176.1/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top