[发明专利]指纹识别方法及装置在审
申请号: | 201510834176.1 | 申请日: | 2015-11-25 |
公开(公告)号: | CN105354560A | 公开(公告)日: | 2016-02-24 |
发明(设计)人: | 张涛;龙飞;陈志军 | 申请(专利权)人: | 小米科技有限责任公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00 |
代理公司: | 北京博思佳知识产权代理有限公司 11415 | 代理人: | 林祥 |
地址: | 100085 北京市海淀区清*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 指纹识别 方法 装置 | ||
技术领域
本公开涉及图像识别技术领域,尤其涉及一种指纹识别方法及装置。
背景技术
从1980年左右开始研究指纹识别以来,到1990后指纹识别不论是在民用领域还是在军用领域,都已经非常成熟,应用也非常普遍。然后,相关技术中的指纹识别通常要求用户的指纹不能太过干燥,并且指纹图像质量要足够清晰,从而确保指纹的全局特征点以及局部特征点的提取,当指纹图像质量较差时,会由于识别不出指纹上的全局特征点以及局部特征点而导致最终的指纹识别不准确,因此在一定程度上约束了指纹识别产品的用户体验。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种指纹识别方法及装置,用以提高低质量的指纹图像在指纹识别时的准确率。
根据本公开实施例的第一方面,提供一种指纹识别方法,包括:
对指纹传感器采集的第一指纹图像与存储在数据库中的第二指纹图像通过卷积神经网络进行特征提取,得到所述第一指纹图像对应的第一指纹特征和所述第二指纹图像对应的第二指纹特征,其中,所述第一指纹特征与所述第二指纹特征的维数相同;
对所述第一指纹特征和所述第二指纹特征进行降维处理,分别得到第三指纹特征和第四指纹特征,其中,所述第三指纹特征和所述第四指纹特征的维数相同,且小于所述第一指纹特征和所述第二指纹特征的维数;
根据所述第三指纹特征和所述第四指纹特征的余弦距离确定所述第一指纹图像与所述第二指纹图像是否为同一指纹。
在一实施例中,所述卷积神经网络包括至少一个特征提取层和特征映射层,在所述卷积神经网络网络的最后一个特征提取层连接有分类器,所述方法还可包括:
将海量的有标签指纹样本输入至所述卷积神经网络,对所述至少一个特征提取层和特征映射层进行训练;
将所述有标签指纹样本通过训练后的所述神经网络进行特征提取,得到所述有标签指纹样本的输出结果;
将所述输出结果输入到所述分类器,对所述分类器进行标定训练。
在一实施例中,所述方法还可包括:
通过已训练的所述卷积神经网络提取所述有标签指纹样本的第一设定维数的特征参数;
对所述第一设定维数的特征参数进行线性判别式分析LDA训练,得到所述LDA的第二设定维数的投影矩阵。
在一实施例中,所述根据所述第三指纹特征和所述第四指纹特征的余弦距离确定所述第一指纹图像与所述第二指纹图像是否为同一指纹,可包括:
将所述第三指纹特征和所述第四指纹特征的余弦距离与预设阈值进行比较;
如果所述余弦距离大于所述预设阈值,确定所述第一指纹图像与所述第二指纹图像为同一指纹;
如果所述余弦距离小于或者等于所述预设阈值,确定所述第一指纹图像与所述第二指纹图像为不同指纹。
根据本公开实施例的第二方面,提供一种指纹识别装置,包括:
第一提取模块,被配置为对指纹传感器采集的第一指纹图像与存储在数据库中的第二指纹图像通过卷积神经网络进行特征提取,得到所述第一指纹图像对应的第一指纹特征和所述第二指纹图像对应的第二指纹特征,其中,所述第一指纹特征与所述第二指纹特征的维数相同;
降维处理模块,被配置为对所述第一提取模块提取到的所述第一指纹特征和所述第二指纹特征进行降维处理,分别得到第三指纹特征和第四指纹特征,其中,所述第三指纹特征和所述第四指纹特征的维数相同,且小于所述第一指纹特征和所述第二指纹特征的维数;
识别模块,被配置为根据所述降维处理模块降维后的所述第三指纹特征和所述第四指纹特征的余弦距离确定所述第一指纹图像与所述第二指纹图像是否为同一指纹。
在一实施例中,所述卷积神经网络包括至少一个特征提取层和特征映射层,在所述卷积神经网络网络的最后一个特征提取层连接有分类器,所述装置还可包括:
第一训练模块,被配置为将海量的有标签指纹样本输入至所述卷积神经网络,对所述至少一个特征提取层和特征映射层进行训练;
第二提取模块,被配置为将所述有标签指纹样本通过所述第一训练模块训练后的所述卷积神经网络进行特征提取,得到所述有标签指纹样本的输出结果;
第二训练模块,被配置为将所述第二提取模块得到的所述输出结果输入到所述分类器,对所述分类器进行标定训练。
在一实施例中,所述装置还可包括:
第三提取模块,被配置为通过已训练的所述卷积神经网络提取所述有标签指纹样本的第一设定维数的特征参数;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于小米科技有限责任公司,未经小米科技有限责任公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510834176.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种风力发电机组齿轮箱的故障诊断方法
- 下一篇:透气鞋底