[发明专利]一种3D打印用ZrO2增韧生物活性陶瓷粉体材料及其制备和应用有效
申请号: | 201510923910.1 | 申请日: | 2015-12-11 |
公开(公告)号: | CN105330285B | 公开(公告)日: | 2019-02-05 |
发明(设计)人: | 马艺娟;郑华德;张明 | 申请(专利权)人: | 华南协同创新研究院 |
主分类号: | C04B35/44 | 分类号: | C04B35/44;C04B35/626 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 雷月华 |
地址: | 523808 广东省东莞市松*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 打印 zro sub 生物 活性 陶瓷 材料 及其 制备 应用 | ||
本发明属于生物医用材料制备领域,具体公开了一种3D打印用ZrO2增韧生物活性陶瓷粉体材料及其制备和应用。所述制备方法包括以下步骤:向由去离子水和保湿剂混合的溶剂中加入分散剂,搅匀,将pH值调为9~11;然后将混合溶液加入生物活性粉体和ZrO2粉体的混合粉体中,球磨制得浆料;将浆料预冻后冷冻干燥,将干燥后的粉体和水溶性粘结剂分别过筛;将过筛后的粉体和水溶性粘结剂球磨,得到粒度分布很窄的粉体即为所述3D打印用ZrO2增韧生物活性陶瓷粉体材料。本发明制备的粉体粒度为微纳米级,且分布很窄,通过ZrO2的颗粒弥散增强增韧和相增韧的作用,制备的产品生物相容性好、强度高、韧性好。
技术领域
本发明属于生物医用材料制备领域,具体涉及一种3D打印用ZrO2增韧生物活性陶瓷粉体材料及其制备和应用。
背景技术
3D打印技术数字化、个性化、快速化的特点,使其用于各个行业领域。随着近代超声波、射线扫描等影像学诊断技术的发展,对于骨缺损、牙齿畸形、颌面损伤等病患,我们可以很容易的得到病变相关部位的二维扫描图像,并将其转化、重建为三维图像,使3D打印技术体外精确复制生物体模型,使数字化技术辅助个性化精确修复成为可能,为个性化医疗的发展提供技术支持。现有的3D打印医用材料有金属、高分子和陶瓷材料。
生物活性陶瓷具有良好的生物活性和生物相容性,植入体内安全、无毒,在体内可与长入的生物组织表面形成牢固的化学结合,并且可以诱导新骨的形成,对于骨修复和再生的治疗具有良好的效果。相对于生物医用高分子材料的低强度、生物医用金属材料的毒性离子释放和生物惰性陶瓷的非骨诱导性,生物活性陶瓷在骨科的缺损和修复方面是理想的材料。但由于陶瓷材料本身共有的脆性,植入体内的陶瓷修复体会发生无征兆的破坏,限制了其在医学领域的应用。
在临床医学中,生物活性陶瓷多用在口腔种植、耳小骨替换、颌面骨缺损修复等非承重大载荷部位,或与金属、高分子材料复合用于人工骨、人工关节、人工血管等。专利CN103520771A以生物活性玻璃为硬质生物材料,以仿细胞膜材料的磷酰胆碱类聚合物和甲壳素为生物活性支架材料,通过仿生学配比、 3DMAX制作和3D打印技术,利用人工骨微循环结构及血液灌注条件,建立了微血管床和生物活性支架复合成的人工骨。专利CN103191465A将去污后的铝人工骨分别浸泡在钙盐和硝酸的醇溶液中,进过后期的烘干和焙烧,制备了表面包覆有以磷酸钙为主的生物陶瓷,但内部是铸造成型的铝骨骼的复合人工骨。为了扩大3D打印生物活性陶瓷材料在医学中的应用,必须提高生物活性陶瓷的韧性。
发明内容
为了克服现有技术的上述缺点与不足,本发明的首要目的在于提供一种3D 打印用ZrO2增韧生物活性陶瓷粉体材料。本发明可得到粒度小且分布均一、韧性和强度高度的用于三维打印的生物陶瓷粉末材料。
本发明的另一目的在于提供上述3D打印用ZrO2增韧生物活性陶瓷粉体材料的制备方法。
本发明的再一目的在于提供上述3D打印用ZrO2增韧生物活性陶瓷粉体材料的应用。
本发明目的通过以下技术方案实现:
一种3D打印用ZrO2增韧生物活性陶瓷粉体材料的制备方法,包括以下步骤:
(1)向由水和保湿剂混合而成的溶剂中加入一定量的分散剂,搅拌均匀,将混合溶液pH值调节为9~11;然后将混合溶液加入生物活性粉体和ZrO2粉体组成的混合粉体中,球磨制得浆料;
(2)将步骤(1)中得到的浆料预冻后冷冻干燥,将干燥后的粉体和水溶性粘结剂分别过筛;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南协同创新研究院,未经华南协同创新研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510923910.1/2.html,转载请声明来源钻瓜专利网。
- 一种具有ZrO<sub>2</sub>抗侵蚀涂层坩埚及其采用注浆成型工艺制ZrO<sub>2</sub>抗侵蚀涂层的方法
- 一种疏水、疏油ZrO<sub>2</sub>纳滤膜的制备方法
- 一种片状AlON/立方相ZrO<sub>2</sub>复合材料的制备方法
- 一种含有SiO<sub>2</sub>掺杂的ZrO<sub>2</sub>纤维的制备方法
- 一种微/纳米结构ZrO<sub>2</sub>及其制备方法
- ZrO<sub>2</sub>薄膜及其后处理方法、QLED及其制备方法
- 一种Cu/m-ZrO<sub>2</sub>催化剂及制备方法及用途
- 医用<sup>90</sup>Y-ZrO<sub>2</sub>陶瓷微球及其制备方法
- 一种球型ZrO<base:Sub>2
- 稀土氧化物/氧化铜-氧化锆催化剂及其制备方法和由甘油制备乳酸的方法
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法