[发明专利]一种CuWO4/WO3异质结构纳米片阵列薄膜的制备方法在审
申请号: | 201510959603.9 | 申请日: | 2015-12-21 |
公开(公告)号: | CN105568314A | 公开(公告)日: | 2016-05-11 |
发明(设计)人: | 徐芳;梅晶晶;陈会敏;白丹丹;蒋凯;武大鹏;高志勇 | 申请(专利权)人: | 河南师范大学 |
主分类号: | C25B11/02 | 分类号: | C25B11/02;C25B11/04;C25B1/04;C25B9/04 |
代理公司: | 新乡市平原专利有限责任公司 41107 | 代理人: | 路宽 |
地址: | 453007 河*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 cuwo sub wo 结构 纳米 阵列 薄膜 制备 方法 | ||
技术领域
本发明属于无机纳米光电材料的合成技术领域,具体涉及一种CuWO4/WO3异质结构纳米片阵列薄膜的制备方法。
背景技术
随着世界人口的增多和人们对物质的要求越来越高,人类对能源的依赖程度和需求量迅速增加,导致了地球上化石燃料储存量的剧烈下降,并产生了严重的环境问题。寻找一种新的清洁能源是各国政府和科学家们所追求和关注的目标。在这些新兴能源中,太阳能作为取之不尽的无污染能源备受关注。
1972年日本学者Fujishima和Honda采用单晶n-TiO2进行太阳能光催化分解水制氢的成功,揭开了半导体光催化研究的序幕,也使人们认识到太阳能转化为电能和化学能的应用前景。光电化学分解水制氢技术,基于太阳能和水两种可再生物质,没有副产物,不会污染环境,同时光电化学分解水技术兼顾小规模应用与大规模开发,是太阳能制氢最具吸引力的途径之一。
WO3是一种间接带隙跃迁的半导体材料,具有良好的化学稳定性,是少数自身具有抗光腐蚀能力的n-型半导体材料之一。WO3的带隙宽度为~2.65eV,吸收光的波长可延伸至可见光区域(~470nm),是一种理想的光电化学分解水的光阳极材料。WO3纳米颗粒薄膜由于存在大量晶界,不利于光生电荷的传输;WO3纳米片阵列由于具有准直的电子传输通道,利用光生电荷的传输。为了提高WO3光阳极光生电荷的分离效率,与其他能带匹配的半导体(如CuWO4)形成异质结是一种有效的方法。
发明内容
本发明解决的技术问题是提供了一种操作简单、成本低廉且环境友好的CuWO4/WO3异质结构纳米片阵列薄膜的制备方法。
本发明为解决上述技术问题采用如下技术方案,一种CuWO4/WO3异质结构纳米片阵列薄膜的制备方法,其特征在于具体步骤为:
(1)将0.2-0.4g仲钨酸铵水合物分散到水和乙醇的混合溶剂中,再加入1-2mL质量浓度为37%的浓盐酸和1-2mL质量浓度为35%的双氧水,搅拌混合均匀后制得WO3前驱物溶液;
(2)将步骤(1)所得的WO3前驱物溶液转移至水热反应釜中,并将FTO导电面朝下放入水热反应釜中,将FTO导电面朝下于140-180℃水热反应2-6h,反应结束后随炉冷却至室温,取出FTO冲洗后室温干燥,然后置于马弗炉中于500℃退火2h制得WO3纳米片阵列;
(3)将步骤(2)所得的WO3纳米片阵列垂直浸入二价铜盐的乙醇溶液中反应0.5-2h后取出,其中二价铜盐的乙醇溶液中Cu2+的摩尔浓度为30-70mmol/L,室温干燥后置于马弗炉中于500℃退火2h制得CuWO4/WO3异质结构纳米片阵列薄膜。
进一步优选,步骤(1)所述的水和乙醇的混合溶剂中水与乙醇的体积比为1:4~4:1。
进一步优选,步骤(3)所述的二价铜盐为CuSO4、Cu(NO3)2或Cu(CH3COO)2。
本发明制得的CuWO4/WO3异质结构纳米片阵列薄膜具有较高的比表面积和准直的电子传输通道,利于对入射光的捕获和光电荷的传输;CuWO4/WO3异质结构还利于光生电荷的分离,因此作为光电化学分解水的光阳极将表现出优异的性质。另外,水热法结合溶液浸泡的方法制备CuWO4/WO3操作简单、成本低廉且环境友好,利于推广和应用。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河南师范大学,未经河南师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201510959603.9/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法
- 一种Bi<sub>2</sub>WO<sub>6</sub>-BaTaO<sub>2</sub>N复合光催化剂及其制备方法
- 一种Bi<sub>2</sub>WO<sub>6</sub>-SrTaO<sub>2</sub>N复合光催化剂及其制备方法
- 一种多孔微纳结构WO<sub>3</sub>气敏涂层及其制备方法
- 一种用于电致变色的花簇状WO<sub>3</sub>薄膜的制备方法
- 石墨相氮化碳负载氧化钨/钨酸铋光催化剂的制备方法
- 三氧化钨
- 一种刻蚀WO<sub>3</sub>纳米薄膜的方法
- 一种WO<sub>3</sub>/MoO<sub>3</sub>复合电致变色膜的制备方法
- 一种臭氧改性WO<sub>3</sub>薄膜光电极的方法
- 软件生成装置和软件生成方法