[发明专利]碳化La2O3与Lu2O3复合掺杂Mo阴极材料及其制备方法有效
申请号: | 201610743795.4 | 申请日: | 2016-08-26 |
公开(公告)号: | CN106206216B | 公开(公告)日: | 2018-04-17 |
发明(设计)人: | 王金淑;董丽然;张杰;田明创;周美玲;左铁镛 | 申请(专利权)人: | 北京工业大学 |
主分类号: | H01J23/04 | 分类号: | H01J23/04;H01J9/04 |
代理公司: | 北京思海天达知识产权代理有限公司11203 | 代理人: | 张立改 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 碳化 la sub lu 复合 掺杂 mo 阴极 材料 及其 制备 方法 | ||
技术领域
碳化La2O3与Lu2O3复合掺杂Mo阴极材料及其制备方法,属于稀土难熔金属阴极材料技术领域。
背景技术
目前家用微波炉磁控管中广泛使用的是ThO2-W阴极材料,但是Th是一种放射性元素,它对生产ThO2-W丝的工人产生放射性危害,这也使得废弃的ThO2-W丝只能进行深埋处理,不能回收利用。我国W产量日渐衰减,这与我国倡导的“可持续发展”相违背。由于ThO2-W 丝的塑性很差,使得ThO2-W丝的成品率只有60%左右,所以研究一种高塑形、无放射的绿色环保的阴极材料十分必要。
本发明采用液液掺杂的方法制备La2O3、Lu2O3掺杂Mo粉,该方法能够得到稀土氧化物分布均匀的掺杂钼粉,这有利于提高阴极发射的均匀性及稳定性。且经过液液掺杂方法得到的La2O3、Lu2O3掺杂Mo阴极,可以实现高温碳化及高温排气工艺处理,这两个工艺对于磁控管中阴极的发射稳定性起着至关重要的影响。当一次电子轰击阴极表面后会激发出二次电子,文章[Y2O3-Lu2O3co-doped molybdenum secondary emission material,Yang,Fan;Wang, Jinshu;Liu,Wei;Liu,Xiang;Zhou,Meiling,APPLIED SURFACE SCIENCE,270(746-750), 2013。]中表明Lu2O3-Y2O3掺杂Mo阴极比单成分Y2O3掺杂Mo阴极具有更好的二次电子发射性能,说明Lu2O3具有良好的二次电子发射性能,因此添加Lu2O3可保证阴极工作后具有持续的高的发射电流密度,从而保证了阴极发射的稳定性,使得阴极的输出电流不衰减。因此本文制备了复合La2O3、Lu2O3掺杂的Mo阴极材料。该种成分的阴极材料在国内外尚未报道。
本发明采用高温短时的碳化工艺,且获得了高碳化度的碳化阴极丝材(碳化度为 10-50%),本发明制备的阴极适用于微波炉的磁控管中。
发明内容
本发明的目的是提供一种磁控管用复合La2O3、Lu2O3掺杂Mo阴极材料以及制备方法,阴极基体中的稀土活性物La2O3、Lu2O3提高了阴极材料的发射性能及发射稳定性。目前对于该种成分,适用于磁控管中,且具有很高发射性能以及发射稳定性的阴极材料在国内外鲜有报道。
碳化La2O3与Lu2O3复合掺杂Mo阴极材料,其特征在于,钼基体中掺杂稀土活性物质 La2O3、Lu2O3,稀土活性物质添加量为阴极材料总量的2.0-5.0wt%,其余为钼;其中,La2O3与Lu2O3以任意比例混合。优选La2O3与Lu2O3的质量比为:(2-5):1,更优选4:1。
本发明所提供的磁控管用复合La2O3、Lu2O3掺杂Mo阴极材料的制备方法,其特征在于,包括以下步骤:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201610743795.4/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种异形阳极结构及其加工工艺
- 下一篇:一种智能电子枪
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法