[发明专利]基于多特征融合的三维模型形状相似性分析方法在审
申请号: | 201611191839.3 | 申请日: | 2016-12-21 |
公开(公告)号: | CN106803094A | 公开(公告)日: | 2017-06-06 |
发明(设计)人: | 韩丽;李丹;周子佳;顾佳莹;陈俏 | 申请(专利权)人: | 辽宁师范大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/46;G06K9/00 |
代理公司: | 大连非凡专利事务所21220 | 代理人: | 闪红霞 |
地址: | 116029 辽宁*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 特征 融合 三维 模型 形状 相似性 分析 方法 | ||
技术领域
本发明属于三维模型的形状分析方法,尤其涉及一种可改善现有形状分析算法效率、适用范围广的基于多特征融合的三维模型形状相似性分析方法。
背景技术
随着三维数字几何模型在虚拟现实、数字化城市、计算机辅助设计/计算机辅助制造(CAD/CAM)、影视娱乐等领域的应用日益广泛,三维模型不仅具有复杂的几何外形和拓扑结构, 即使对于同一类型的模型,其不同个体之间也会存在着巨大的几何形状和拓扑差异。作为三维模型压缩、检索、重建等应用的核心内容——形状分析方法,已经成为计算机图形学与计算机视觉领域的热点研究问题。
目前,三维数字几何模型的形状分析方法大体可分为全局形状特征分析方法与局部形状特征分析方法。全局形状特征分析方法是根据三维模型的连接结构,进行全局的形状分析。其代表性算法主要分为:基于统计特征的方法、基于体素化的特征方法、基于拓扑图的特征方法和基于投影的特征方法。然而当三维模型的局部发生变化时,如姿态改变或局部形变,模型的全局特征描述就会随之改变,这样会对模型的分析与理解造成误差。另外,当三维模型部分相似时,用传统的全局特征难以实现局部的描述与匹配。局部形状特征分析方法主要衡量模型的局部特征,其代表性算法有:Spin Image,局部球面调和描述,显著局部形状描述,拉普拉斯算子描述,热核与波核描述等。然而,局部特征分析易受局部噪声影响,局限于特定模型表示,无法有效识别整体模型的相似性。
总之,目前的形状分析和处理方法尚存在以下不足:(1)依赖单一的几何特征,如曲率、法向量、测地线距离、几何距等,在面对几何形状和拓扑结构较为复杂的模型时,很难得到有意义的分析和处理结果。(2)对于局部形变、姿态变化的同一类模型,缺乏有效的识别与判断。(3)依赖于特定的几何模型,无法直接推广到其他模型表示方法。
发明内容
本发明是为了解决现有技术所存在的上述技术问题,提供一种可改善现有形状分析算法的效率、适用范围广的基于多特征融合的三维模型形状相似性分析方法。
本发明的技术解决方案是: 一种基于多特征融合的三维模型形状相似性分析方法,其特征在于按如下步骤进行:
a. 建立三维模型的图表示;
b. 基于三维模型的图表示,提取模型的几何特征:
b.1 提取测地线距离特征;
b.2 提取角距离特征;
b.3 提取空间体积特征;
c. 利用提取的几何特征,分别构造几何相似性权值矩阵,获得基于不同几何特征的拉普拉斯矩阵;对于不同拉普拉斯矩阵进行融合,建立统一的拉普拉斯形状描述矩阵;
d. 依据拉普拉斯形状描述矩阵,基于特征求解方法,获得模型的不变特征向量,输出三维模型的不变特征向量;
e. 对于输入的所有三维模型,可重复步骤a到步骤d;
f. 采用薄板样条函数,计算模型间的形状相似性:
f.1 将两个模型的不变特征向量作为输入信息,基于薄板样条函数实现模型间的有效配准;
f.2 基于配准函数,计算模型间的误差距离;
f.3 基于误差距离以及阈值,判断有效的匹配点对,从而获得模型间的相似度;
g. 结束。
具体可按如下步骤进行:
a. 构造三维模型的图表示:
令无向带权图G(V, E)表示三维模型M,表示连接相邻网格面片重心的边,分别表示相邻网格面片的重心,为两个相邻网格面片公共边的中点;
b.依据三维模型的图表示,进行几何特征提取:
b.1 提取测地线距离特征:依据网格模型的边连接情况,计算两个相邻边的权值为:;对于不相邻的网格面片之间的边权值,可通过测地线最短路径距离之和得到:,其中表示相邻的两个面片;由此得到每一对面片之间的权值被称为测地线的权值图,从而得到基于测地线距离的相似性矩阵及度矩阵,最终构造测地线距离的拉普拉斯矩阵:;
b.2提取角距离特征:设相邻面片的角距离为:,表示为相邻面片的法向夹角,值为,控制着模型表面凹凸区域的权重,当凹凸区域的值相等时,凹凸区域是同等对待的。本发明倾向于侧重凹区域,因此设置凹凸区域的值比。不相邻面片之间的权值可由最短路径的角距离之和获得:,其中表示相邻的面片,得到每一对面片之间的角距离的权值图,从而得到基于角距离的相似性矩阵及其度矩阵,最终构造角距离的拉普拉斯矩阵: 。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于辽宁师范大学,未经辽宁师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201611191839.3/2.html,转载请声明来源钻瓜专利网。