[发明专利]一种多车道水平式尾气遥测设备数据处理方法在审

专利信息
申请号: 201611267902.7 申请日: 2016-12-31
公开(公告)号: CN106650826A 公开(公告)日: 2017-05-10
发明(设计)人: 康宇;岳龙川;李泽瑞;陈绍冯;昌吉 申请(专利权)人: 中国科学技术大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/02
代理公司: 北京科迪生专利代理有限责任公司11251 代理人: 杨学明,顾炜
地址: 230026 安*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 车道 水平 尾气 遥测 设备 数据处理 方法
【权利要求书】:

1.一种多车道水平式尾气遥测设备数据处理方法,其特征在于包括以下步骤:

(1)利用尾气遥测设备对各机动车的尾气排放浓度进行远程采集,同时采集机动车尾气排放浓度的影响因素,包括:机动车的车型、速度与加速度,以及当前时间、当前天气、当前温度、当前湿度、当前压强,当前风向与风速,并对远程采集到的机动车尾气排放浓度及机动车尾气排放浓度的影响因素数据分别进行预处理,构成样本数据;

(2)将机动车尾气排放浓度分为k个等级,取每个等级范围的中值作为该等级的尾气排放浓度,利用深度神经网络方法建立深度神经网络模型,对步骤(1)所得样本数据进行训练;

(3)基于步骤(2)所建立的深度神经网络模型,当尾气遥测设备的控制和数据分析处理单元判定出现机动车并排行驶情况时,根据步骤(1)所测机动车的车型、速度与加速度,以及当前时间、当前天气、当前温度、当前湿度、当前压强,当前风向与风速,通过所建立的深度神经网络模型得到该机动车的尾气排放浓度。

2.根据权利要求1所述的多车道水平式尾气遥测设备数据处理方法,其特征在于:步骤2中,所述深度神经网络模型由四层约束玻兹曼机(RBM)组成,深度神经网络模型的结构表示为N-1000-500-250-10,其中,N表示样本数据维数,1000、500、250、10分别代表第一到四层的神经元个数。

3.根据权利要求2所述的多车道水平式尾气遥测设备数据处理方法,其特征在于:所述四层RBM网络模型,每层均为自编码网络,分为编码和解码两部分,其中编码部分的映射函数为f(x),解码部分的映射函数为g(x),其都是由高度非线性sigmoid函数组成。

4.根据权利要求1所述的多车道水平式尾气遥测设备数据处理方法,其特征在于:步骤(1)中,所述数据的预处理为:将机动车尾气排放浓度数据随机分为k个等级,得到每个样本数据的初始聚类标签L=[l1,l2,…,lN],其中N表示样本数据的数量,l表示样本数据的聚类标签。

5.根据权利要求1所述的多车道水平式尾气遥测设备数据处理方法,其特征在于:步骤(2)中,所述四层RBM网络模型时加入该模型特征层的类内约束函数的新的深度神经网络目标函数表示为:

其中,c*是对应第i个样本数据xi的在特征空间的聚类中心,X是输入样本数据的集合,X′=g(f(x)),是输出样本数据的集合,λ为权重系数,ft(xi)为第t次迭代时第i个样本数据xi在特征层的表达式,表示类内约束函数。

6.根据权利要求1所述的多车道水平式尾气遥测设备数据处理方法,其特征在于:步骤(3)中,根据尾气遥测设备所测图像,当判定出现机动车并排行驶情况时,设并排行驶机动车数为M,将其中(M-1)辆机动车样本数据带入所建立的四层RBM网络模型,即可预测该(M-1)辆机动车的尾气排放浓度,尾气遥测设备所测总排放浓度减去该(M-1)辆机动车排放浓度之和,即可得到第M辆机动车尾气排放浓度,至此,所有机动车尾气排放浓度测量完成。

7.根据权利要求1所述的多车道水平式尾气遥测设备数据处理方法,其特征在于:步骤(2)中,k的个数取决于精度要求,k为正整数,范围5-50。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611267902.7/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top