[发明专利]一种多车道水平式尾气遥测设备数据处理方法在审

专利信息
申请号: 201611267902.7 申请日: 2016-12-31
公开(公告)号: CN106650826A 公开(公告)日: 2017-05-10
发明(设计)人: 康宇;岳龙川;李泽瑞;陈绍冯;昌吉 申请(专利权)人: 中国科学技术大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/02
代理公司: 北京科迪生专利代理有限责任公司11251 代理人: 杨学明,顾炜
地址: 230026 安*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 车道 水平 尾气 遥测 设备 数据处理 方法
【说明书】:

技术领域

本发明涉及一种多车道水平式尾气遥测设备数据处理方法,属于城市路网机动车尾气实时遥感监技术领域。

背景技术

机动车污染已成为我国空气污染的重要来源,是造成灰霾、光化学烟雾污染的重要原因,机动车污染防治的紧迫性日益凸显。而目前对于在用机动车的尾气检测,广泛使用的方法有四类:无负荷测试方法(包括怠速法和双怠速法)、工况法(稳态工况法、瞬态工况法和简易瞬态工况法)、遥感检测方法以及车载尾气检测技术。传统检测方法在城市中机动车检测领域得到广泛使用,并且效果很好。但是离线检测方法通过模拟机动车行驶状态来检测尾气,无法准确地反映出尾气排放状况。

尾气遥测设备利用多种机动车尾气检测器对路网中每一辆机动车进行尾气检测,实现了机动车尾气的实时在线监测,为控制机动车尾气排放总量、实现节能减排、治理城市大气污染、改善人居环境,提供了监测数据方面的支持。

尾气遥测设备是一种应用遥测技术来测量由汽车尾气排气污染物高低的一种装置,它的原理是通过排气污染物引起的长距离光度的变化的一种检测仪器。使用时将该仪器放在道路两侧,由仪器发出一束横穿道路的光,当汽车从该仪器经过时,汽车所排出的尾气会使光束的特性发生变化,从而检测出该汽车的尾气排放的尾气污染物的高低,它是在不影响汽车的正常行驶下完成的。目前国内外的汽车尾气遥测仪采用的光源有下面三种,红外可调谐二极管激光器(TDL)、不分光红外线吸收型(NDIR)传感器及紫外氘灯的光,对于点燃式发动机汽车排气污染物排放气体中的CO、CO2、HC、NO四种气体含量进行测量。这种检测汽车尾气的方法是目前世界上最先进的方法,

由中国专利200910241681.X可知,目前的多车道机动车尾气遥测装置实际上是水平式尾气遥测设备,采取非接触式测量方法,可以在不妨碍正常交通的情况下,检测各机动车的各类尾气排放数据,具有检测效率高(每小时最多可以检测三千多辆车),不影响机动车正常行驶,防止舞弊和能较真实反映机动车道路实际排放状况等突出优点。

但从该专利中可以看出,该设备目前可以获取单向或双向多车道路面机动车行驶的实时状况,准确获取短时间内多车道上只有一辆车行驶时的多种尾气浓度,因此,当出现多车并排行驶情况时,系统会自动检测并判定此时所测得数据无效,然而在实际生活中,尤其在经常发生交通拥堵的城市交通道路上,多车并排行驶情况所测得的数据往往占据着一大部分比例,这就使得系统不得不舍去大量测量数据,一方面降低了多车道遥感监测系统的测量效率,另一方面也使得所测数据并不能很好地反映出所测路段的机动车尾气排放情况,因此解决多车道遥感监测系统的并排行驶机动车数据处理问题,对于提高系统测量效率和测量准确率,具有重要意义。

发明内容

为了解决现有技术存在的问题,本发明的目的在于提供一种多车道水平式尾气遥测设备数据处理方法,对尾气遥测设备处理机动车并排行驶情况下无法处理数据的问题进行了改进,解决多车道尾气遥测设备的并排行驶机动车数据处理问题,对于提高系统测量效率和测量准确率;同时利用深度神经网络对样本数据进行训练,对机动车尾气浓度的预测也较为准确。

本发明技术解决方案:一种多车道水平式尾气遥测设备数据处理方法包括以下步骤:

(1)利用尾气遥测设备对各机动车的尾气排放浓度进行远程采集,同时采集机动车尾气排放浓度的影响因素,包括:机动车的车型、速度与加速度,以及当前时间、当前天气、当前温度、当前湿度、当前压强,当前风向与风速,并对远程采集到的机动车尾气排放浓度及机动车尾气排放浓度的影响因素数据分别进行预处理,构成样本数据;

(2)将机动车尾气排放浓度分为k个等级,取每个等级范围的中值作为该等级的尾气排放浓度,利用深度神经网络方法建立深度神经网络模型,对步骤(1)所得样本数据进行训练;

(3)基于步骤(2)所建立的深度神经网络模型,当尾气遥测设备的控制和数据分析处理单元判定出现机动车并排行驶情况时,根据步骤(1)所测机动车的车型、速度与加速度,以及当前时间、当前天气、当前温度、当前湿度、当前压强,当前风向与风速,通过所建立的深度神经网络模型得到该机动车的尾气排放浓度。

步骤2中,所述深度神经网络模型由四层约束玻兹曼机(RBM)组成,深度神经网络的结构表示为N-1000-500-250-10,其中,N表示样本数据维数,1000、500、250、10分别代表第一到四层的神经元个数。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201611267902.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top