[发明专利]基于二元群结构蟑螂仿生算法的实值优化方法在审
申请号: | 201710351273.4 | 申请日: | 2017-05-18 |
公开(公告)号: | CN107194459A | 公开(公告)日: | 2017-09-22 |
发明(设计)人: | 程乐;宋艳红;华大龙;杨晔;刘万辉;王志勃;潘永安;李刚;郜继红 | 申请(专利权)人: | 淮安信息职业技术学院 |
主分类号: | G06N3/00 | 分类号: | G06N3/00 |
代理公司: | 淮安市科翔专利商标事务所32110 | 代理人: | 韩晓斌 |
地址: | 223005 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 二元 结构 蟑螂 仿生 算法 优化 方法 | ||
技术领域
本发明涉及一种基于二元群结构蟑螂仿生算法的实值优化方法。
背景技术
自然计算是通过模拟自然界事物获得灵感的一类算法,通常具有自适应、自组织、自学习能力,能够解决传统计算方法难于解决的各种复杂问题。在过去三十年中,自然计算得到了广泛的研究和应用,许多灵感源于自然界的仿生算法被相继提出,例如:神经网络、模拟退火算法、基因算法、差分进化算法、粒子群算法蚁群算法等等。其中,粒子群和蚁群算法属于自然计算中一类模拟群居生物行为的仿生算法,此类算法也被称为群智能算法。
受蟑螂生物行为启发的仿生算法是一类新近提出的群智能算法,发展不到十年。Chen于2008年提出蟑螂群算法(Cockroach Swarm Optimization,简称CSO),CSO算法模拟了蟑螂个体尾随、离散、互食等行为,具有较高的寻优效率。进一步,通过在尾随行为中引入权重系数,一种改进的蟑螂群算法(Modified CSO,简称MCSO)被提出。受生物学领域有关蟑螂生物行为研究文献的启发,Havens等人提出一类蟑螂侵扰算法(Roach Infestation Optimization,简称RIO)和饥饿蟑螂侵扰算法(Hungry RIO,简称HRIO),Havens等人通过实验证明HRIO算法的效率优于基本的PSO算法。以上述算法为基础,其他一些改进的蟑螂仿生算法也相继被提出。然而已有的蟑螂仿生算法普遍存在着早熟收敛问题,算法容易过早的收敛到一个局部最优解,进而失去了解的多样性,陷入局部最优。
发明内容
本发明的目的是:提供一种基于二元群结构蟑螂算法的实值优化方法,将基本CSO算法种群中的蟑螂个体根据下标划分为多个子群,以整群和子群二元结构为基础提出两种不同的寻优计算数学模型,最后通过贪婪选择策略来计算得出蟑螂个体最终行进的位置,完成最优解计算。
为实现上述目的,本发明采取以下技术方案:将蟑螂种群根据蟑螂个体下标划分为若干子群;每次函数评价中,蟑螂个体随机地在整群或子群组成的二元结构中完成寻优计算,并通过贪婪选择策略完成蟑螂下一步行进位置计算,进而完成整个算法的最优解计算;其包括如下步骤:
步骤1:D维解空间内,初始化一个规模为N的蟑螂种群,种群中蟑螂个体i本质上为位置向量Xi=(xi,1,xi,2,…,xi,D),(i=1,…,N),初始阶段应尽可能的使种群中蟑螂均匀分布于整个解空间;
步骤2:初始化子群规模为K,总迭代次数为G,蟑螂计数器i=1,迭代技术器t=1;
步骤3:根据适应值函数f(X)(X∈RD)计算出当前种群中最优的蟑螂个体,并将其位置向量作为种群当前最优解Pg;
步骤4:对于蟑螂i执行群追逐操作,发现新位置Fi;
步骤5:对于蟑螂i执行贪婪选择操作,决定是否更新蟑螂i的当前位置Xi;
步骤6:判断种群是否找到了更优解,找到则更新Pg;
步骤7:如果i≤N,则执行:i←i+1,跳转至步骤4;否则,i←1,顺序执行步骤8;
步骤8:如果t=G,则执行步骤9;否则,转步骤4;
步骤9:输出Pg作为算法输出结果。
更具体地,所述步骤2子群划分,具体包括:子群规模为K,则每个蟑螂i按下标生成子群;K满足0<K≤(N-1)/2;K=5,则蟑螂i的子群为:{Xi,Xi+1,Xi+2,,Xi+3,XK}。
更具体地,所述步骤3计算出整个种群当前最优解,计算当前最优解公式如下:Pg0=Opt{X01,…,X0N};上式中0表示算法处于初始化阶段。
更具体地,所述步骤4蟑螂i执行群追逐操作,群追逐操作公式具体如下:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于淮安信息职业技术学院,未经淮安信息职业技术学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710351273.4/2.html,转载请声明来源钻瓜专利网。