[发明专利]一种适用于姿态机动工况下的星敏和陀螺数据融合方法有效
申请号: | 201710500466.1 | 申请日: | 2017-06-27 |
公开(公告)号: | CN107228672B | 公开(公告)日: | 2021-01-29 |
发明(设计)人: | 叶立军;丰保民;朱虹;尹海宁;任家栋 | 申请(专利权)人: | 上海航天控制技术研究所 |
主分类号: | G01C21/20 | 分类号: | G01C21/20;G01C21/24 |
代理公司: | 上海信好专利代理事务所(普通合伙) 31249 | 代理人: | 朱成之;周乃鑫 |
地址: | 200233 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 适用于 姿态 机动 工况 陀螺 数据 融合 方法 | ||
本发明涉及一种适用于姿态机动工况下的星敏和陀螺数据融合方法,基于最小二乘原理,确定星敏测量增益系数;基于上节拍估计姿态和当前陀螺测量角速度,一步递推得到当前拍姿态;融合星敏测量姿态数据和陀螺递推姿态数据。本发明采用最小二乘法,将星敏数据和陀螺积分数据进行融合,利用陀螺积分姿态噪声小的特点提高姿态估计精度,利用星敏测量值准确的特点来保持姿态不发散,解决现有扩展卡尔曼滤波算法在姿态机动期间姿态估计不准确的问题。
技术领域
本发明涉及航天器姿轨控系统星敏感器(后面简称“星敏”)和陀螺之间数据融合方法,本方法适用于卫星姿态机动期间星敏和陀螺数据融合。
背景技术
卡尔曼滤波是信息融合算法中应用最普遍的算法之一,主要用于实时融合动态多敏感器冗余数据。其要点是通过测量手段校正模型的不确定性,以模型的连续性克服测量的离散性,以测量的确定性抑制模型的不确定性。当系统的状态方程和量测方程均为线性并且系统噪声与传感器的测量噪声均为高斯白噪声时,应用经典卡尔曼滤波算法可以为融合数据提供唯一的统计意义下的最优估计。用卡尔曼滤波器对数据进行融合后,既能获得系统的当前状态估计,又可预报系统的未来状态。
经典卡尔曼滤波只适用于系统模型为线性的情况,而实际系统都包含非线性因素,扩展卡尔曼滤波(EKF)利用线性化技巧将非线性滤波问题转化为近似线性滤波问题,具体做法是假设步长足够小,围绕标称状态把状态量和观测量展开成泰勒级数,并取一次近似值。
总之,扩展卡尔曼滤波(EKF)是一种常用的线性化方法,将非线性问题转换为标称状态附近的线性问题。克服了经典卡拉曼滤波仅用于线性估计的不足。
实际工程上,采用扩展卡尔曼滤波的方式对星敏和陀螺数据进行融合,可以获得卫星稳态工作时高精度姿态数据,取得较好的应用效果。但是,随着卫星应用越来越多,卫星任务也越来越复杂,姿态确定精度也越来越高,比如某些卫星要求在姿态机动过程中仍需要进行高精度的星敏和陀螺数据融合,由于姿态机动的存在,不满足扩展卡尔曼滤波线性化的假设前提,即传统扩展卡尔曼滤波不适用于卫星姿态机动期间的星敏和陀螺高精度数据融合问题。
发明内容
本发明的目的在于提供一种适用于任意姿态机动情况下星敏感器和陀螺数据融合的方法,解决现有扩展卡尔曼滤波算法在姿态期间姿态估计不准确的问题。
为了达到上述目的,本发明提供一种适用于姿态机动工况下的星敏和陀螺数据融合方法,其包含以下过程:
第一:基于最小二乘原理,确定星敏测量增益系数;
第二:基于上节拍估计姿态和当前陀螺测量角速度,一步递推得到当前拍姿态;
第三:融合星敏测量姿态数据和陀螺递推姿态数据。
本发明采用最小二乘法,将星敏数据和陀螺积分数据进行融合,利用陀螺积分姿态噪声小的特点提高姿态估计精度,利用星敏测量值准确的特点来保持姿态不发散。
本发明提供了一种针对星敏感器和陀螺联合滤波的改进手段,与现有技术相比,其优点和有益效果是:
1)采用最小二乘法对星敏和陀螺数据进行融合,可同时保证数据融合的准确性和精确性;
2)避免了kalman滤波线性化要求,使得星敏和陀螺数据融合算法不仅适用于稳态,也适用于姿态机动等模式。
3)算法原理简单,参数物理意义清晰,软件实现简单可靠,具备极好的工程可操作性。
附图说明
图1是本发明方法的流程示意图。
具体实施方式
以下将结合实施例对本发明的方法作进一步详细说明。
第一:基于最小二乘原理,确定星敏测量增益系数Kxm
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海航天控制技术研究所,未经上海航天控制技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710500466.1/2.html,转载请声明来源钻瓜专利网。