[发明专利]基于全变分的混合加权维纳滤波图像去噪方法有效

专利信息
申请号: 201710683688.1 申请日: 2017-08-11
公开(公告)号: CN107610056B 公开(公告)日: 2020-08-11
发明(设计)人: 周先春;黄金;王力;汪一凡 申请(专利权)人: 南京信息工程大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 江苏海越律师事务所 32402 代理人: 唐小红
地址: 210044 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 全变分 混合 加权 滤波 图像 方法
【权利要求书】:

1.一种基于全变分的混合加权维纳滤波图像去噪方法,其特征在于,包括如下步骤:

步骤一:利用包括电荷耦合器件的摄像机采集需要处理的原始图像;

步骤二:对所述摄像机采集到的原始图像进行灰度图像转换;

步骤三:对转换后的灰度图像进行加噪处理,且通过最小化能量函数使得加噪处理后的灰度图像达到平滑状态,其中,加噪后图像如下式(1)所示:

I0(x,y)=I(x,y)+n(x,y) (1)

式(1)中,I(x,y)表示原始灰度图像,I0(x,y)表示含有噪声的灰度图像,x、y分别表示图像中像素点的横坐标、纵坐标,n为均值为0、方差为σ2的随机噪声,σ表示平滑尺度;

步骤四:采用如下式(2)所示的混合模型对加噪后的图像进行去噪处理:

I=αWiener(I)+(1-α)NATV(I) (2)

式(2)中,I表示混合模型去噪后图像,Wiener表示维纳滤波模型,NATV表示全变分模型,α表示权重参数,且0<α<1;

所述维纳滤波模型如下式(3)所示,且在所述维纳滤波模型中,应使得原始输入图像的估计与原始图像之间的误差达到最小,

式(3)中,f(x,y)为原始输入图像,为复原图像,E[·]表示数学期望,x,y表示图像中像素点的横坐标、纵坐标;

所述全变分模型如下式(4)所示:

式(4)中,div为散度算子、为梯度算子,t为时间扩散尺度,ε为正则参数;λ为拉格朗日乘子,λ越小,扩散作用越大,λ趋于0时会导致边缘模糊;λ越大,去噪后的图像纹理就越发粗糙;I0=I0(x,y)表示含有噪声的灰度图像,I=I(x,y,t)为去噪后的灰度图像,为高斯核函数,σ为平滑尺度,定义且g(x,y)的范围为[1,2]。

2.根据权利要求1所述的基于全变分的混合加权维纳滤波图像去噪方法,其特征在于,在步骤二中,利用MATLAB的rgb2gray函数将采集到的原始图像转换为灰度图像。

3.根据权利要求1所述的基于全变分的混合加权维纳滤波图像去噪方法,其特征在于,在步骤三中,利用MATLAB的imnoise函数为所述灰度图像添加高斯噪声,其调用格式为J=imnoise(I,’gaussian’,m,v),I表示原始灰度图像,gaussian在MATLAB中表示高斯噪声,其中m为高斯噪声均值,m的默认值为0,v为高斯噪声的方差。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201710683688.1/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top