[发明专利]基于全变分的混合加权维纳滤波图像去噪方法有效
申请号: | 201710683688.1 | 申请日: | 2017-08-11 |
公开(公告)号: | CN107610056B | 公开(公告)日: | 2020-08-11 |
发明(设计)人: | 周先春;黄金;王力;汪一凡 | 申请(专利权)人: | 南京信息工程大学 |
主分类号: | G06T5/00 | 分类号: | G06T5/00 |
代理公司: | 江苏海越律师事务所 32402 | 代理人: | 唐小红 |
地址: | 210044 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 全变分 混合 加权 滤波 图像 方法 | ||
本发明提供的基于全变分的混合加权维纳滤波图像去噪方法,包括如下步骤:步骤一:利用包括电荷耦合器件的摄像机采集需要处理的原始图像;步骤二:对所述摄像机采集到的原始图像进行灰度图像转换;步骤三:对转换后的灰度图像进行加噪处理;步骤四:采用由维纳滤波模型和全变分模型构成的混合模型对加噪后的图像进行去噪处理。本发明既能确保图像内部纹理信息的完整性,又能减少图像边缘角点特征信息的缺失。
技术领域
本发明涉及图像处理技术领域,尤其涉及一种基于全变分的混合加权维纳滤波图像去噪方法。
背景技术
图像去噪及复原的研究在边缘检测、图像分割、机器视觉、模式识别等图像分析领域已成为重要的研究课题。图像的边缘结构纹理信息能够反映图像内容的基本特征及重要信息,而传统滤波模型在图像去噪处理过程中总会导致边缘信息在一定程度上的损失,故寻找一种既能达到有效的图像去噪效果又能保护边缘信息的方法至关重要。由于先验信息的缺乏,去噪问题常具有病态性,因此需要使用如偏微分方程(PDE)的数学方法,其能够准确反映未知变量关于时间和空间变量的导数之间的制约关系。通过先建立“能量函数”,再由变分法求得欧拉方程,与某种物理过程类比建立对应的PDE。
目前,对于去噪方法的研究有很多,但是对于一些内部纹理特征及边缘角点信息仅靠梯度算子来扩散并不能完全达到理想的去噪效果。所以急需对相关的内容进行研究,得到完善的结论,能够有效地为保证图像边缘角点的特征信息的完整性提供有效方法。
发明内容
本发明提供一种基于全变分的混合加权维纳滤波图像去噪方法,用以使得在对图像进行去噪处理的过程中,既能确保图像内部纹理信息的完整性,又能减少图像边缘角点特征信息的缺失。
为了解决上述问题,本发明提供了一种基于全变分的混合加权维纳滤波图像去噪方法,包括如下步骤:
步骤一:利用包括电荷耦合器件的摄像机采集需要处理的原始图像;
步骤二:对所述摄像机采集到的原始图像进行灰度图像转换;
步骤三:对转换后的灰度图像进行加噪处理,且通过最小化能量函数使得加噪处理后的灰度图像达到平滑状态,其中,加噪后图像如下式(1)所示:
I0(x,y)=I(x,y)+n(x,y) (1)
式(1)中,I表示原始灰度图像,I0表示加噪图像,x、y分别表示图像中像素点的横坐标、纵坐标,n为均值为0、方差为σ2的随机噪声,σ表示平滑尺度;
步骤四:采用如下式(2)所示的混合模型对加噪后的图像进行去噪处理:
I混=αWiener(I)+(1-α)NATV(I) (2)
式(2)中,I混表示混合模型去噪后的图像,Wiener表示维纳滤波模型,NATV表示全变分模型,α表示权重参数,且0<α<1;
所述维纳滤波模型如下式(3)所示,且在所述维纳滤波模型中,应使得原始输入图像的估计与原始图像之间的误差达到最小,
式(3)中,f(x,y)为原始输入图像,为复原图像,E[·]表示数学期望,x,y表示图像中像素点的横坐标、纵坐标;
所述全变分模型如下式(4)所示:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201710683688.1/2.html,转载请声明来源钻瓜专利网。