[发明专利]SISO紧格式无模型控制器基于系统误差的参数自整定方法有效
申请号: | 201711081100.1 | 申请日: | 2017-11-06 |
公开(公告)号: | CN107942655B | 公开(公告)日: | 2020-06-09 |
发明(设计)人: | 卢建刚;李雪园 | 申请(专利权)人: | 浙江大学 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 浙江杭州金通专利事务所有限公司 33100 | 代理人: | 刘晓春 |
地址: | 310027 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | siso 格式 模型 控制器 基于 系统误差 参数 方法 | ||
1.SISO紧格式无模型控制器基于系统误差的参数自整定方法,其特征在于包括以下步骤:
步骤(1):SISO紧格式无模型控制器参数包含惩罚因子λ和步长因子ρ;确定SISO紧格式无模型控制器待整定参数,所述SISO紧格式无模型控制器待整定参数,为所述SISO紧格式无模型控制器参数的部分或全部,包含惩罚因子λ和步长因子ρ的任意之一或任意种组合;确定BP神经网络的输入层节点数、隐含层节点数、输出层节点数,所述输出层节点数不少于所述SISO紧格式无模型控制器待整定参数个数;初始化BP神经网络的隐含层权系数、输出层权系数;
步骤(2):将当前时刻记为k时刻,基于系统输出期望值与系统输出实际值,采用系统误差计算函数计算得到k时刻的系统误差,记为e(k);所述系统误差计算函数的自变量包含系统输出期望值与系统输出实际值;
步骤(3):将步骤(2)计算得到的系统误差及其函数组、系统输出期望值、系统输出实际值的任意之一或任意种组合,作为BP神经网络的输入;
步骤(4):基于步骤(3)所述的BP神经网络的输入,BP神经网络进行前向计算,计算结果通过输出层输出,得到所述SISO紧格式无模型控制器待整定参数的值;
步骤(5):基于步骤(2)得到的系统误差e(k)、步骤(4)得到的所述SISO紧格式无模型控制器待整定参数的值,采用SISO紧格式无模型控制器的控制算法,计算得到SISO紧格式无模型控制器针对被控对象在k时刻的控制输入u(k);
步骤(6):基于步骤(5)得到的所述控制输入u(k),计算所述控制输入u(k)分别针对各个所述SISO紧格式无模型控制器待整定参数在k时刻的梯度信息,具体计算公式如下:
当所述SISO紧格式无模型控制器待整定参数中包含惩罚因子λ时,所述控制输入u(k)针对所述惩罚因子λ在k时刻的梯度信息为:
当所述SISO紧格式无模型控制器待整定参数中包含步长因子ρ时,所述控制输入u(k)针对所述步长因子ρ在k时刻的梯度信息为:
其中,为k时刻的伪梯度估计值;
步骤(7):以系统误差函数的值最小化为目标,采用梯度下降法,结合步骤(6)得到的所述梯度信息,进行系统误差反向传播计算,更新BP神经网络的隐含层权系数、输出层权系数,作为后一时刻BP神经网络进行前向计算时的隐含层权系数、输出层权系数;所述系统误差函数的自变量包含系统误差、系统输出期望值、系统输出实际值的任意之一或任意种组合;
步骤(8):所述控制输入u(k)作用于被控对象后,得到被控对象在后一时刻的系统输出实际值,返回到步骤(2),重复步骤(2)到步骤(8)。
2.根据权利要求1所述的SISO紧格式无模型控制器基于系统误差的参数自整定方法,其特征在于,所述步骤(2)中的所述系统误差计算函数采用e(k)=y*(k)-y(k),其中y*(k)为k时刻设定的系统输出期望值,y(k)为k时刻采样得到的系统输出实际值;或者采用e(k)=y*(k+1)-y(k),其中y*(k+1)为k+1时刻的系统输出期望值,y(k)为k时刻采样得到的系统输出实际值。
3.根据权利要求1所述的SISO紧格式无模型控制器基于系统误差的参数自整定方法,其特征在于,所述步骤(3)中的所述系统误差及其函数组,包含k时刻的系统误差e(k)、k时刻及之前所有时刻的系统误差的累积即k时刻系统误差e(k)的一阶后向差分e(k)-e(k-1)、k时刻系统误差e(k)的二阶后向差分e(k)-2e(k-1)+e(k-2)、k时刻系统误差e(k)的高阶后向差分的任意之一或任意种组合。
4.根据权利要求1所述的SISO紧格式无模型控制器基于系统误差的参数自整定方法,其特征在于,所述步骤(7)中的所述系统误差函数为e2(k)+ωΔu2(k),其中,e(k)为系统误差,Δu(k)=u(k)-u(k-1),ω为大于或等于0的常数。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711081100.1/1.html,转载请声明来源钻瓜专利网。