[发明专利]SISO紧格式无模型控制器基于系统误差的参数自整定方法有效
申请号: | 201711081100.1 | 申请日: | 2017-11-06 |
公开(公告)号: | CN107942655B | 公开(公告)日: | 2020-06-09 |
发明(设计)人: | 卢建刚;李雪园 | 申请(专利权)人: | 浙江大学 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 浙江杭州金通专利事务所有限公司 33100 | 代理人: | 刘晓春 |
地址: | 310027 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | siso 格式 模型 控制器 基于 系统误差 参数 方法 | ||
本发明公开了一种SISO紧格式无模型控制器基于系统误差的参数自整定方法,利用系统误差及其函数组作为BP神经网络的输入,BP神经网络进行前向计算并通过输出层输出惩罚因子、步长因子等SISO紧格式无模型控制器待整定参数,采用SISO紧格式无模型控制器的控制算法计算得到针对被控对象的控制输入,以系统误差函数的值最小化为目标,采用梯度下降法,并结合控制输入分别针对各个待整定参数的梯度信息,进行系统误差反向传播计算,在线实时更新BP神经网络的隐含层权系数、输出层权系数,实现控制器基于系统误差的参数自整定。本发明提出的SISO紧格式无模型控制器基于系统误差的参数自整定方法,能有效克服控制器参数的整定难题,实现良好的控制效果。
技术领域
本发明属于自动化控制领域,尤其是涉及一种SISO紧格式无模型控制器基于系统误差的参数自整定方法。
背景技术
无模型控制器是一种新型的数据驱动控制方法,不依赖被控对象的任何数学模型信息,仅依赖于被控对象实时测量的输入输出数据进行控制器的分析和设计,并且实现简明、计算负担小及鲁棒性强,对未知非线性时变系统也能够进行很好的控制,具有良好的应用前景。
无模型控制器有多种实现方法,其中SISO(Single Input and Single Output,单输入单输出)紧格式无模型控制器是无模型控制器的主要实现方法之一。SISO紧格式无模型控制器的理论基础,由侯忠生与金尚泰在其合著的《无模型自适应控制—理论与应用》(科学出版社,2013年,第56页)中提出,其控制算法如下:
其中,u(k)为k时刻的控制输入;e(k)为k时刻的系统误差;为k时刻的伪梯度估计值;λ为惩罚因子;ρ为步长因子。
目前,SISO紧格式无模型控制器在实际投用前需要依赖经验知识来事先设定惩罚因子λ和步长因子ρ等参数的数值,在实际投用过程中也尚未实现惩罚因子λ和步长因子ρ等参数的在线自整定。参数有效整定手段的缺乏,不仅使SISO紧格式无模型控制器的使用调试过程费时费力,而且有时还会严重影响SISO紧格式无模型控制器的控制效果,制约了SISO紧格式无模型控制器的推广应用。
为此,为了打破制约SISO紧格式无模型控制器推广应用的瓶颈,本发明提出了一种SISO紧格式无模型控制器基于系统误差的参数自整定方法。
发明内容
为了解决背景技术中存在的问题,本发明的目的在于,提供一种SISO紧格式无模型控制器基于系统误差的参数自整定方法。
为此,本发明的上述目的通过以下技术方案来实现,包括以下步骤:
步骤(1):SISO紧格式无模型控制器参数包含惩罚因子λ和步长因子ρ;确定SISO紧格式无模型控制器待整定参数,所述SISO紧格式无模型控制器待整定参数,为所述SISO紧格式无模型控制器参数的部分或全部,包含惩罚因子λ和步长因子ρ的任意之一或任意种组合;确定BP神经网络的输入层节点数、隐含层节点数、输出层节点数,所述输出层节点数不少于所述SISO紧格式无模型控制器待整定参数个数;初始化BP神经网络的隐含层权系数、输出层权系数;
步骤(2):将当前时刻记为k时刻,基于系统输出期望值与系统输出实际值,采用系统误差计算函数计算得到k时刻的系统误差,记为e(k);
步骤(3):将步骤(2)计算得到的系统误差及其函数组、系统输出期望值、系统输出实际值的任意之一或任意种组合,作为BP神经网络的输入;
步骤(4):基于步骤(3)所述的BP神经网络的输入,BP神经网络进行前向计算,计算结果通过输出层输出,得到所述SISO紧格式无模型控制器待整定参数的值;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711081100.1/2.html,转载请声明来源钻瓜专利网。