[发明专利]一种无人机识别方法、装置及电子设备在审
申请号: | 201711204886.1 | 申请日: | 2017-11-27 |
公开(公告)号: | CN107993648A | 公开(公告)日: | 2018-05-04 |
发明(设计)人: | 尉志青;马昊;魏思杰;冯志勇;张少廷;王义总;侯佳蕾 | 申请(专利权)人: | 北京邮电大学 |
主分类号: | G10L15/02 | 分类号: | G10L15/02;G10L15/06;G10L25/18;G10L25/24;G10L25/27;G06K9/62 |
代理公司: | 北京柏杉松知识产权代理事务所(普通合伙)11413 | 代理人: | 项京,马敬 |
地址: | 100876 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 无人机 识别 方法 装置 电子设备 | ||
技术领域
本发明涉及模式识别技术领域,特别是涉及一种基于无人机声音的无人机识别方法、装置及电子设备。
背景技术
随着电子技术的发展,无人机逐渐被广泛应用到商业和民用消费市场,例如,航空拍摄、新闻报道、快递服务等行业。为了实现对无人机的管理,使得能够更好地应用于多种领域,无人机识别技术显得尤为重要。
现有技术中,一种常见的方法是通过雷达检测实现无人机识别。具体地,雷达设备发送超声波信号,当雷达设备检测到该超声波信号对应的反射波信号时,确定待检测区域存在无人机。
但是,通过雷达检测实现无人机识别的过程中,很容易误识别,例如,待检测区域中飞行的是小鸟,雷达设备也可能接收到反射波信号,如此可能将小鸟误识别为无人机。可以看出,现有的通过雷达检测实现无人机识别的方法中,无人机识别的精准度比较低。
发明内容
本发明实施例的目的在于提供一种无人机识别方法、装置及电子设备,以提高无人机识别的精准度。具体技术方案如下:
第一方面,本发明实施例提供了一种无人机识别方法,包括:
采集待检测区域的声音信号;
对所述声音信号进行快速傅里叶变换,得到变换声音信号;
根据所述变换声音信号的频率特征,对所述待检测区域是否存在无人机进行预判决;
在所述预判决的结果为存在无人机时,对所述变换声音信号进行梅尔倒谱系数MFCC变换,得到MFCC特征向量;
将所述MFCC特征向量输入至预先训练的支持向量机SVM模型中,识别所述待检测区域是否存在无人机,其中,所述SVM模型是根据多个不同类型的样本声音信号,以及各样本声音信号是否为无人机运行声音的对应结果训练得到的,其中,所述多个不同类型的样本声音信号中至少部分为无人机运行声音信号。
可选的,所述SVM模型的训练过程包括:
获取不同类型的多个样本声音信号;其中,所述多个样本声音信号中至少部分为无人机运行声音信号;
对所述不同类型的多个样本声音信号进行MFCC变换,分别得到所述多个样本声音信号对应的MFCC特征向量;
分别将所述多个样本声音信号对应的MFCC特征向量,以及所述多个样本声音信号是否为无人机运行声音的对应结果,输入至预设SVM模型中,对所述预设SVM模型进行训练,得到所述SVM模型。
可选的,所述采集待检测区域的声音信号,包括:
通过预设采样频率,采集待检测区域的声音信号。
可选的,所述根据所述变换声音信号的频率特征,对所述待检测区域是否存在无人机进行预判决,包括:
当所述变换声音信号的频率存在于预设频段内时,确定所述预判决的结果为存在无人机;
当所述变换声音信号的频率不存在于所述预设频段内时,确定所述预判决的结果为不存在无人机。
可选的,在识别出所述待检测区域存在无人机之后,还包括:
通过警告灯或者蜂鸣器进行报警。
第二方面,本发明实施例提供了一种无人机识别装置,包括:
采集模块,用于采集待检测区域的声音信号;
第一变换模块,用于对所述声音信号进行快速傅里叶变换,得到变换声音信号;
预判决模块,用于根据所述变换声音信号的频率特征,对所述待检测区域是否存在无人机进行预判决;
第二变换模块,用于在所述预判决的结果为存在无人机时,对所述变换声音信号进行梅尔倒谱系数MFCC变换,得到MFCC特征向量;
识别模块,用于将所述MFCC特征向量输入至预先训练的支持向量机SVM模型中,识别所述待检测区域是否存在无人机,其中,所述SVM模型是根据多个不同类型的样本声音信号,以及各样本声音信号是否为无人机运行声音的对应结果训练得到的,其中,所述多个不同类型的样本声音信号中至少部分为无人机运行声音信号。
可选的,所述装置还包括:
获取模块,用于获取不同类型的多个样本声音信号;其中,所述多个样本声音信号中至少部分为无人机运行声音信号;
第三变换模块,用于对所述不同类型的多个样本声音信号进行MFCC变换,分别得到所述多个样本声音信号对应的MFCC特征向量;
训练模块,用于分别将所述多个样本声音信号对应的MFCC特征向量,以及所述多个样本声音信号是否为无人机运行声音的对应结果,输入至预设SVM模型中,对所述预设SVM模型进行训练,得到所述SVM模型。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711204886.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:中文语音自助学习语音识别器
- 下一篇:基于五门限的声音端点检测方法及其应用