[发明专利]发光二极管有效
申请号: | 201711218871.0 | 申请日: | 2017-11-28 |
公开(公告)号: | CN107819058B | 公开(公告)日: | 2019-07-23 |
发明(设计)人: | 林文禹;叶孟欣;罗云明;曾建尧;张中英 | 申请(专利权)人: | 厦门三安光电有限公司 |
主分类号: | H01L33/04 | 分类号: | H01L33/04;H01L33/32 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 361100 福建省厦门市*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 发光二极管 | ||
本发明提供一种具高带隙超晶格结构的发光二极管,依次包括:N型导通层,超晶格层,发光层、P型电子阻挡层,P型导通层,其特征在于:所述超晶格层位于所述N型导通层和发光层之间,其由周期结构堆叠而成,其中至少一个周期结构包含第一子层、第二子层和第三子层,其中所述第一子层的能隙Eg1、第二子层的能隙Eg2和第三子层的能隙Eg3的关系为Eg1<Eg2<Eg3,且第三子层的能隙Eg3大于所述电子阻挡层的能隙Eg。
技术领域
本发明涉及氮化镓半导体器件外延领域,具体涉及一种具有高带隙 (EnergyBandgap, 简称Eg) 超晶格的发光二极管。
背景技术
发光二极管(LED,Light Emitting Diode)是一种半导体固体发光器件,其利用半导体PN结作为发光材料,可以直接将电转换为光。一般具有蓝宝石衬底的正装芯片,由于散热的问题,容易过热使得芯片烧毁,因此相对无法操作在高的电流密度下。现阶段高功率垂直发光二极管是作为高电流操作的主要芯片型态,进一步发展出了垂直导通薄膜芯片发光二极管 (VTF LED)。
在紫外固化领域,垂直导通薄膜芯片发光二极管作为主要的发光光源,其一般操作于高电流以达高输出光功率,具有高可靠性,高热态操作稳定性。目前高功率紫外光源的设计除建立在这样的芯片型态上,对于外延结构设计的要求更高。
在一般的发光二极管的外延结构中,广泛采用P型电子阻挡层 (ElectronBlocking Layer,简称EBL) 技术,用以阻挡电子,防止溢流。目前已发展出各种不同型态的电子阻挡层,如带隙渐变式 (Al Slope EBL)、带隙堆叠超晶格式(AlGaN/GaN、AlN/AlGaN、AlGaN/InGaN等超晶格结构)、极化电场调整式 (AlInN EBL) 等。然而,电子阻挡层的一个大原则,通常为在整个外延结构除底层外 (深紫外 LED 中 AlN bulk底层带隙为整个外延结构中最高),在最靠近活性层(active layer,MQW) 后的最高带隙层,作用为防止电流溢出MQW,提高辐射复合率 (Radiative-Recombination rate) 。
外延技术发展至今,P型电子阻挡层在外延结构设计中较难满足高亮度的需求。
发明内容
本发明提供了一种发光二极管结构,其可以满足高电流密度下达到高输出光功率,并且具有高可靠性,高热态操作稳定性。
本发明的技术方案为:在发光层与N型传导之间加入一超晶格层,此超晶格层之带隙高于P型电子阻挡层的带隙,为整个外延结构中最高,其由周期结构堆叠而成,其中至少一个周期结构包含第一子层、第二子层和第三子层,其中所述第一子层的能隙Eg1、第二子层的能隙Eg2和第三子层的能隙Eg3的关系为Eg1<Eg2<Eg3。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图1是一种常规发光二极管的外延结构的SIMS成分轮廓分析图。
图2为本发明实施例一发光二极管的结构示意图。
图3为本发明实施例一的波长-亮度散点图。
图4是本发明实施例一与常规结构的热冷态因子对比图。
图5是本发明实施例二发光二极管的结构示意图。
具体实施方式
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门三安光电有限公司,未经厦门三安光电有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711218871.0/2.html,转载请声明来源钻瓜专利网。