[发明专利]遗传算法RBF神经网络在涡流传感器非线性补偿中的应用在审

专利信息
申请号: 201810780496.7 申请日: 2018-07-17
公开(公告)号: CN109102068A 公开(公告)日: 2018-12-28
发明(设计)人: 俞阿龙;戴金桥;孙红兵 申请(专利权)人: 淮阴师范学院
主分类号: G06N3/04 分类号: G06N3/04
代理公司: 暂无信息 代理人: 暂无信息
地址: 223300 江苏省淮安*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 涡流传感器 非线性补偿 输出频率 逆模型 应用遗传算法 非线性关系 补偿环节 网络结构 网络训练 训练样本 遗传算法 软补偿 寻优 串联 全局 应用 优化
【说明书】:

遗传算法RBF神经网络在涡流传感器非线性补偿中的应用,它涉及一种涡流传感器技术领域。用RBF神经网络建立涡流传感器非线性补偿模型,称为RBF神经网络逆模型,设涡流传感器的输入为δ,涡流传感器输出频率f,f=g(δ)为非线性关系,在涡流传感器后串联一个补偿环节,使y=g1(f)=kδ,那么就实现了涡流传感器的非线性补偿,当k=1时,y=δ=g1(f)称为涡流传感器的逆模型,将涡流传感器输出频率f作为RBF神经网络的输入训练样本。采用上述技术方案后,本发明有益效果为:具有很强的泛化能力和有高的精度,能同时优化网络结构和参数,具有全局寻优能力,补偿精度高,网络训练速度快、能实现在线软补偿。

技术领域

本发明涉及涡流传感器技术领域,具体涉及一种遗传算法RBF神经网络在涡流传感器非线性补偿中的应用。

背景技术

涡流传感器是一种能将机械位移、振幅等参量转换成电信号输出的非电量电测装置。它具有结构简单、灵敏度高、适用性强、易于进行非接触测量、不损伤被测工件表面等优点,在工业领域中得到了较为广泛的应用。它的基本用途是基于其位移输出特性,即输出信号的某些特征反映了位移输入量的大小。在利用涡流传感器进行测量时,存在输入和输出之间的非线性关系,为了保证一定的测量精度及便于在测控系统中应用,必须对其进行非线性补偿。目前常用补偿方法有硬件补偿法和软件法,但由于涡流传感器严重的非线性,用硬件电路补偿时,电路复杂,补偿精度也不高。在微机化的智能仪器和控制系统中,常用软件代替硬件进行非线性补偿,并已得到了广泛的应用。

发明内容

本发明的目的在于针对现有技术的缺陷和不足,提供一种遗传算法RBF神经网络在涡流传感器非线性补偿中的应用,具有很强的泛化能力和有高的精度,能同时优化网络结构和参数,具有全局寻优能力,补偿精度高、鲁棒性好、网络训练速度快、能实现在线软补偿;补偿后具有良好的线性,最大非线性误差在0.5%范围内,提高了测量的准确度。

为实现上述目的,本发明采用以下技术方案是:它包含如下步骤:

步骤1、用RBF神经网络建立涡流传感器非线性补偿模型,称为RBF神经网络逆模型,设涡流传感器的输入为δ,涡流传感器输出频率f,f=g(δ)为非线性关系,在涡流传感器后串联一个补偿环节,使y=g1(f)=kδ,那么就实现了涡流传感器的非线性补偿,当k=1时,y=δ=g1(f)称为涡流传感器的逆模型,将涡流传感器输出频率f作为RBF神经网络的输入训练样本,与涡流传感器输入对应的线性化位移(kδ)作为RBF神经网络的输出训练样本;

步骤2、运用遗传算法优化RBF神经网络的结构和参数,将RBF神经网络的拓扑结构、连接权重、阈值、隐节点中心参数和宽度参数看成一个整体,编码为染色体,选择适当规模的种群,通过遗传迭代逐渐优化,求得网络参数和隐节点数同时优化的结果。基于RBF神经网络的结构特点,对给定的涡流传感器非线性补偿问题,其输入与输出关系是确定的,优化拓扑结构只需确定隐层节点数,神经网络的结构和参数采用二级递阶染色体结构描述,其中控制基因表示隐层节点。

所述遗传算法优化为采用适应度函数:

控制基因用二进制编码,参数基因采用实数编码,群体规模取100,同时对RBF神经网络参数和拓扑结构进行优化,式中——网络对应第i个输入样本对应的网络输出,yi是其希望输出,m1是总的学习样本数,N是隐节点数,R是网络输入节点数,a、b、d是常系数;

按轮盘赌法进行优质个体的选择,对控制基因串采用单点交叉,参数基因的交叉操作采用线性组合方式,即将两个基因串对应交叉位的值相组合生成新的基因串,对控制基因,变异操作以一定的概率对变异位进行反运算,对参数基因,采用偏置变异,以一定的概率给变异位基因加一个从偏置区域中随机选取的数值。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于淮阴师范学院,未经淮阴师范学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810780496.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top