[发明专利]基于分布函数取对数变换的威布尔分布参数估计方法有效
申请号: | 201811395145.0 | 申请日: | 2018-11-22 |
公开(公告)号: | CN109101466B | 公开(公告)日: | 2019-03-22 |
发明(设计)人: | 贾祥;程志君;郭波 | 申请(专利权)人: | 中国人民解放军国防科技大学 |
主分类号: | G06F17/18 | 分类号: | G06F17/18 |
代理公司: | 长沙国科天河知识产权代理有限公司 43225 | 代理人: | 邱轶 |
地址: | 410073 湖*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 威布尔分布参数 对数变换 威布尔分布函数 坐标轴 分布函数 分布曲线 拟合误差 可靠性统计 失效概率 线性形式 样本数据 拟合法 拟合 转化 保证 | ||
本发明属于可靠性统计技术领域,本发明公开了一种基于分布函数取对数变换的威布尔分布参数估计方法,首先计算各个样本数据处的失效概率点估计,再将威布尔分布函数取对数变换,而后根据分布曲线拟合法来拟合变换后的函数,给出了威布尔分布参数的估计方法。本发明通过威布尔分布函数的取对数变换,可将威布尔分布函数转化为线性形式,从而简化了威布尔分布参数估计的计算。另外,在分布曲线拟合时,考虑到没有改变坐标轴中的横坐标,故没有采用坐标轴中纵坐标拟合误差最小这一常用的原则,而是依据坐标轴中横坐标拟合误差最小的原则,从而保证了威布尔分布参数估计的准确性。
技术领域
本发明主要涉及到可靠性统计领域,特指基于分布函数取对数变换的威布尔分布参数估计方法。
背景技术
在可靠性统计领域,常常涉及到产品可靠性的评估问题,这其中的关键是利用产品寿命试验的样本数据估计产品寿命所服从分布中的参数,一般指参数的点估计。
威布尔分布被广泛用于描述产品的寿命,威布尔分布其分布函数为
(1)
相应的, 威布尔分布其概率密度函数为
(2)
、为威布尔分布的2个分布参数,其中为形状参数,为尺度参数。
当产品寿命服从威布尔分布时,对于威布尔分布参数的估计,当前常用的是极大似然估计法和分布曲线拟合法。
记经寿命试验获得的n个样本产品的样本数据(即样本产品的失效时间)为,且要求。极大似然估计法的基本思想是参数的估计令样本的极大似然函数最大,但形状参数的极大似然估计很容易出现“过估”现象,即估计值大于真值,造成分布参数估计的不准确性。
分布曲线拟合法的基本思想是首先求得样本数据处的失效概率估计,然后通过曲线拟合得到一条分布曲线,继而给出威布尔分布参数的估计。由于对于式(1)中的威布尔分布函数,经过两次取对数变换,可得
从而可将威布尔分布函数转化为线性函数。进一步记为样本数据处的失效概率估计,令,,继而可利用线性拟合的思想,通过拟合诸点给出威布尔分布参数的估计为
基于线性拟合的威布尔分布参数估计形式简单,计算方便,因而在可靠性统计中得到了广泛应用。但是该方法在计算过程中将威布尔分布函数两次取对数,造成分布函数形态的改变,特别是当样本数据比较小或比较大时尤为明显,从而使得参数估计结果极不准确。
基于非线性拟合的威布尔分布参数估计方法没有改变式(1)中分布函数的形态,利用非线性拟合的思想,直接拟合诸点,通过令误差函数
(3)
最小,得到拟合后的分布曲线并给出威布尔分布参数的点估计。非线性拟合法虽然没有改变分布函数的形态,但由于威布尔分布函数的复杂性,造成式(3)的数学形式比较复杂,不利于点估计的具体计算。
发明内容
由于极大似然估计法容易造成分布参数出现“过估”现象,故应当采用分布曲线拟合法。但在当前的各类分布曲线拟合法中,线性拟合法将威布尔分布函数两次取对数变换造成分布形态改变很大,影响了拟合精度,而非线性拟合法虽然没有改变分布函数形态,但由于直接调用数学形式复杂的分布函数,造成后续计算过于复杂。为避免现有方法中存在的上述问题,本发明提供基于分布函数取对数变换的威布尔分布参数估计方法。
为了解决上述技术问题,本发明提出的技术方案为:
基于分布函数取对数变换的威布尔分布参数估计方法,包括如下步骤:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军国防科技大学,未经中国人民解放军国防科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811395145.0/2.html,转载请声明来源钻瓜专利网。