[发明专利]近红外多光谱成像多指标协同的鱼片新鲜度无损评价方法有效

专利信息
申请号: 201811534065.9 申请日: 2018-12-14
公开(公告)号: CN109856080B 公开(公告)日: 2020-08-18
发明(设计)人: 成军虎;吕啸野;孙大文;韩忠 申请(专利权)人: 华南理工大学
主分类号: G01N21/3563 分类号: G01N21/3563;G01N21/359
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 向玉芳;李本祥
地址: 511458 广东省广州市*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 红外 光谱 成像 指标 协同 鱼片 新鲜 无损 评价 方法
【权利要求书】:

1.近红外多光谱成像多指标协同的鱼片新鲜度无损评价方法,其特征在于包括以下步骤:

(1)从0天开始,间隔天数为1或者2天,制备鱼肉样本并冷藏不同天数,冷藏天数最长不超过7天,获取N个鱼片样本,N个鱼片样本随机分为5组;N大于90,每组样品个数为N/5;

(2)利用近红外多光谱成像系统对不同储藏天数的鱼片样本进行扫描,共得到N个鱼片样本的多光谱图像;

(3)提取鱼片样本的多光谱中心波长处对应的反射光谱值,所述中心波长分别为1250nm、1452nm、1655nm、1785nm、和1890nm;

(4)测定表征鱼片新鲜度的三个指标,利用半微量定氮法测定TVB-N值、分光光度法测定TBARS值及高效液相色谱法测定K值;

(5)结合步骤(3)得到的中心波长处对应的反射光谱值和步骤(4)得到的TVB-N值、TBARS值及K值三个鱼片新鲜度指标值,利用最小二乘支持向量机构建鱼片新鲜度多指标预测模型;Yi=C0+AX1250nm+BX1452nm+CX1655nm+DX1785nm+EX1890nm

其中,Yi为新鲜度评价指标TVB-N值、TBARS值和K值,i为新鲜度等级,取值分别为1、2、和0,分别表示一级鲜度、二级鲜度和无鲜度;X1250nm、X1452nm、X1655nm、X1785nm、X1890nm分别为波长为1250nm、1452nm、1655nm、1785nm、1890nm对应的平均反射光谱值,并与TVB-N值、TBARS值和K值测量时的光谱值所对应;C0、A、B、C、D、E均为协调系数,通过Matlab编程自动生成;

(6)利用步骤(5)得到的预测模型评价待测鱼片样品的新鲜程度;

所述新鲜程度的评价为:

当鱼片处于一级鲜度时,模型Yi协调系数分别为C0=-22.31,A=25.23,B=-21.42,C=46.55,D=124.12,E=23.48;同时测到的三个指标的变化范围分别为:TVB-N值≤14.27 mgN/100 g、TBARS值≤0.58 mg/kg、K值≤19.36%;

当鱼片处于二级鲜度时,模型Yi协调系数分别为C0=-103.77,A=35.64,B=41.72,C=32.11,D=165.69,E=221.53;同时测到的三个指标的变化范围分别为:14.27 mg N/100 g<TVB-N值≤19.88 mg N/100 g,0.58 mg/kg<TBARS值≤0.99 mg/kg,19.36%<K值≤59.48%;

当鱼片处于无鲜度时,模型Yi协调系数分别为C0=-202.8,A=32. 37,B=46.42,C=41.7,D=195.13,e=213.8;同时测到的三个指标的变化范围分别为:TVB-N值>19.88 mg N/100 g,TBARS值>0.99 mg/kg,K值>59.48%。

2.根据权利要求1所述的近红外多光谱成像多指标协同的鱼片新鲜度无损评价方法,其特征在于,步骤(3)所述提取鱼片样本的多光谱中心波长处对应的反射光谱值是在对得到的鱼片样本的多光谱图像进行大小校正、掩膜、去噪处理后进行。

3.根据权利要求1所述的近红外多光谱成像多指标协同的鱼片新鲜度无损评价方法,其特征在于,步骤(1)所述鱼肉样本的鱼为草鱼、鲤鱼、鲢鱼、大头鱼或青鱼。

4.根据权利要求1所述的近红外多光谱成像多指标协同的鱼片新鲜度无损评价方法,其特征在于,步骤(1)所述鱼肉样本的制作包括去鳞、去内脏、去头、去尾和皮,分割成大小尺寸为3cm×3cm×1cm;用流动水冲洗干净,用吸水纸吸干鱼肉表面的残水,装入聚乙烯保鲜袋密封并于4℃条件下冷藏。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811534065.9/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top