[发明专利]近红外多光谱成像多指标协同的鱼片新鲜度无损评价方法有效

专利信息
申请号: 201811534065.9 申请日: 2018-12-14
公开(公告)号: CN109856080B 公开(公告)日: 2020-08-18
发明(设计)人: 成军虎;吕啸野;孙大文;韩忠 申请(专利权)人: 华南理工大学
主分类号: G01N21/3563 分类号: G01N21/3563;G01N21/359
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 向玉芳;李本祥
地址: 511458 广东省广州市*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 红外 光谱 成像 指标 协同 鱼片 新鲜 无损 评价 方法
【说明书】:

发明公开了多光谱多指标协同的鱼片新鲜程度评价方法,该方法分别测定冷藏不同天数的鱼片样本的新鲜度指标TVB‑N值、TBARS值和K值;利用多光谱成像系统扫描相应的鱼片样本,得到相应的多光谱图像,对近红外多光谱图像进行处理,分别提取5个中心波长1250nm、1452nm、1655nm、1785nm、和1890nm处对应的平均反射光谱值;基于所获取的TVB‑N值、TBARS值和K值和平均光谱值,利用LS‑SVM建立预测模型,并对待测鱼片样品进行新鲜程度预测。本发明采用多光谱多指标协同评价鱼片的新鲜程度,降低了传统方法所需时间,增强了检测效率和准确率,可以有效实现快速、无损、非接触在线检测的目的。

技术领域

本发明涉及鱼片新鲜度品质检测领域,特别涉及一种近红外多光谱成像多指标协同的鱼片新鲜度无损评价方法。

背景技术

鱼类是水产品重要组成部分。鱼肉味道鲜美,营养物质含量高,是人类所需的蛋白质、氨基酸、脂肪等营养物质的重要来源,是人们膳食的重要组成部分。新鲜度是鱼肉品质评价的一个重要综合指标。影响鱼肉新鲜度的因素很多,主要涉及到储藏温度、微生物污染、加工方法以及自身的物理化学及生物化学变化。

目前,测定和评价鱼肉新鲜度的方法大致分为:感官评价法、物理特性测量、化学分析法等。实验室常用的化学分析法以测量蛋白质降解指标—挥发性盐基氮值(TVB-N)、脂肪氧化指标—硫代巴比妥酸值(TBARS)和ATP降解指标—K值来评价鱼肉的新鲜度。通常而言,当TVB-N值≤15mg N/100g界定为一级鲜度,15mg N/100g<TVB-N值≤20mg N/100g,界定为二级鲜度,TVB-N值>20mg N/100g时,界定为失去食用价值;同样的,当K值≤20%,判定鱼肉为一级鲜度;当20%<K值≤60%时,判定鱼肉为二级鲜度,仍可以食用;当K值>60%时,鱼肉已经腐败变质,失去食用价值。在实验室通常采用半微量定氮法、分光光度法及高效液相色谱法来测量对应的三个指标。化学分析法测试虽然结果准确,但属于破坏性检测。很显然,在实际检测过程中,这些方法存在步骤繁琐、操作要求高、耗时费力及不能实现无损快速在线检测。

发明内容

为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种近红外多光谱成像多指标协同的鱼片新鲜度无损评价方法,在不破坏鱼片样品的前提下,可以有效节省检测时间,节约测量成本,实现鱼片新鲜度的快速无损检测与评价。

本发明的目的通过以下技术方案实现:

近红外多光谱成像多指标协同的鱼片新鲜度无损评价方法,包括以下步骤:

(1)从0天开始,间隔天数为1或者2天,制备鱼肉样本并冷藏不同天数,冷藏天数最长不超过7天,获取N个鱼片样本,N个鱼片样本随机分为M组;N大于90,M为4-10的整数;每组样品个数为N/5;

(2)利用近红外多光谱成像系统对不同储藏天数的鱼片样本进行扫描,共得到N个鱼片样本的多光谱图像;

(3)提取鱼片样本的多光谱中心波长处对应的反射光谱值,所述中心波长分别为1250nm、1452nm、1655nm、1785nm、和1890nm;

(4)测定表征鱼片新鲜度的三个指标,利用半微量定氮法测定TVB-N值、分光光度法测定TBARS值及高效液相色谱法测定K值;

(5)结合步骤(3)得到的中心波长处对应的反射光谱值和步骤(4)得到的TVB-N值、TBARS值及K值三个鱼片新鲜度指标值,利用最小二乘支持向量机(LS-SVM)构建鱼片新鲜度多指标预测模型;Yi=C0+AX1250nm+BX1452nm+CX1655nm+DX1785nm+EX1890nm

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811534065.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top