[发明专利]预测截断图像的系统和方法、准备数据的方法及其介质在审

专利信息
申请号: 201811592101.7 申请日: 2018-12-25
公开(公告)号: CN111369635A 公开(公告)日: 2020-07-03
发明(设计)人: 赵冰洁;王学礼;孙妍 申请(专利权)人: 通用电气公司
主分类号: G06T11/00 分类号: G06T11/00
代理公司: 上海专利商标事务所有限公司 31100 代理人: 侯颖媖;钱慰民
地址: 美国*** 国省代码: 暂无信息
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 预测 截断 图像 系统 方法 准备 数据 及其 介质
【说明书】:

发明涉及预测截断图像的系统和方法、准备数据的方法及其介质。其中准备数据的方法包括虚拟模拟步骤,用于对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像。所述预测截断图像的方法基于训练的学习网络预测截断图像,所述训练的学习网络是基于通过上述准备数据的方法来得到的虚拟失真图像和虚拟精标准图像构成的数据集进行数据训练得到的。还提供与上述方法对应的系统以及记录的指令可实现上述方法的记录介质。

技术领域

本发明涉及医疗成像领域,特别涉及在计算机断层扫描(CT)成像中为预测截断图像准备数据以及基于该数据预测截断图像的技术。

背景技术

在CT扫描的过程中,使用检测器来采集通过患者身体后的X射线的数据,之后再对这些采集到的X射线数据进行处理以得到投影数据。可利用这些投影数据来重建切片图像。完整的投影数据可重建准确的切片图像以用于诊断。

然而,如果患者体型较大或摆放特殊的姿势,那么该患者身体的某些部位就会超出扫描域,检测器也就无法采集到完整的投影数据,这被称之为数据截断。这种数据截断会带来截断伪影,并最终导致得到失真的重建图像。失真的图像在放射治疗中肯定是不理想的,因为医生在诊断时必需要知道身体皮肤的线条和沿着射线束的CT数,这样才可以准确判断出应该施加到患者身上的放射剂量,但是失真的图像无法准确体现上述信息。这样一来,如何恢复扫描域外的图像(我们称之为截断图像)就是必须要解决的问题。

有好几种用于处理上述截断问题的传统方法,它们通过一些数学模型来预测被截断的投影数据,比如利用水模来预测截断部分,但是这些传统方法所恢复的截断图像的质量会随不同的实际情况而改变,性能也都不够理想。此外,不同的用户往往涉及不同的病人集,他们所需要的图像数据也有侧重点,但传统方法中从来未涉及要将图像数据进行分类。

近年来,又涌现出一种新技术,其中通过人工智能(AI)的方式来预测截断图像。通过AI来预测截断图像,其无疑有着传统技术无法比拟的巨大优势。然而,AI的性能取决于其输入数据。医院或研究机构和部门每天都会持续积累原始图像数据,但我们显然不能简单地将这些积累的原始图像数据都输入到AI网络中进行学习,因为AI的性能取决的是输入数据的质量,而不是数量。另一方面,通过AI来预测截断图像,必须要有对应失真图像的输入数据集和对应没有数据截断的精标准图像的精标准数据集被同时输入进AI网络中,然而这样的图像并不容易获取,或者,数据类型也较为单一。

发明内容

本发明的一个目的在于克服现有技术中的上述和/或其他问题,其能够获得充足、可靠的数据用于算法验证,从而大大有助于提高对截断图像进行预测的准确率。

根据本发明的第一方面,提供一种用于为预测截断图像准备数据的方法,其包括虚拟模拟步骤,用于对图像数据进行虚拟模拟,以同时得到有数据截断的虚拟失真图像和没有数据截断的虚拟精标准图像。

较佳地,在所述虚拟模拟步骤前,所述方法还包括自适应分类步骤,该自适应分类步骤用于根据预先定义的特征对采集到的图像数据进行自适应分类,所述虚拟模拟步骤用于对所述分类后的图像数据进行虚拟模拟。

所述预先定义的特征可包括图像数据类型。进一步地,所述预先定义的特征还可包括所述图像数据类型对应的可能性。

所述图像数据类型可为患者的解剖部位。

较佳地,所述虚拟模拟步骤进一步包括:接收没有数据截断的原始图像;使所述原始图像中对应目标物体的部分虚拟平移(offset)以部分地移出扫描域,从而得到虚拟精标准图像;对所述虚拟精标准图像进行模拟扫描并进行虚拟数据采集,以生成虚拟截断数据;以及对所述虚拟截断数据进行图像重建处理,以得到虚拟失真图像。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于通用电气公司,未经通用电气公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201811592101.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top