[发明专利]基于新能源车数据的危险驾驶车辆检测方法及装置有效

专利信息
申请号: 201910589919.1 申请日: 2019-07-02
公开(公告)号: CN110239559B 公开(公告)日: 2020-11-24
发明(设计)人: 李万清;刘俊;张迪;唐莹;袁友伟;胡海洋;鄢腊梅 申请(专利权)人: 绍兴数鸿科技有限公司
主分类号: B60W40/09 分类号: B60W40/09
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 傅朝栋;张法高
地址: 312399 浙江省绍兴市上虞区曹娥*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 新能源 数据 危险 驾驶 车辆 检测 方法 装置
【权利要求书】:

1.一种基于新能源车数据的危险驾驶车辆检测方法,其特征在于,步骤如下:

S1:获取包括目标新能源车辆在内的所有新能源车在连续时段内的运行数据,所述的运行数据包括车辆编号、数据记录时间、当前累计里程、当前瞬时速度、当前加速踏板行程;

S2:对包括目标新能源车辆在内的每一辆新能源车的运行数据,以两个相邻时刻的数据记录时间和瞬时速度为一组,计算两个相邻时刻内的平均速度和加速度绝对值|ai|,作为一组变速行为样本;每一辆新能源车分别得到一个变速行为样本数据集;

S3:分别计算每辆新能源车的加速行为特征曲线和减速行为特征曲线,再对所有新能源车的加速行为特征曲线和减速行为特征曲线分别进行聚类,得到相对异常加速行为的阈值曲线和相对异常减速行为的阈值曲线,两条曲线的自变量为车速,因变量为加速度绝对值;

S4:分别计算每辆新能源车的加速踏板行程变化特征曲线,再对所有新能源车的加速踏板行程变化特征曲线进行聚类,得到相对异常踩踏加速踏板行为的阈值曲线,曲线的自变量为车速,因变量为加速踏板行程;

S5:对于待检测的目标新能源车,根据三条阈值曲线分别计算异常加速行为特征值Vac、异常减速行为特征值Vad和异常踩踏加速踏板行为特征值Vsa,然后综合计算其危险驾驶行为总特征值Vall,若该目标新能源车的危险驾驶行为总特征值Vall高于特征值阈值,则判定该车辆为危险驾驶车辆;

所述的步骤S3的具体实现方法为:

S301:对于每一辆新能源车中的每组变速行为样本,根据对应的前后两个时刻的瞬时速度,判断车辆在该时段内处于加速状态还是减速状态,若处于加速状态则将该样本作为加速行为样本,若处于减速状态则将该样本作为减速行为样本;

S302:对同一辆新能源车的所有加速行为样本,将其按照平均速度大小划分成若干个速度区间;在每个速度区间内将落入该区间的所有样本按照|ai|从小到大进行排序,得到第一加速度序列,然后取第一加速度序列的第P百分位数作为该速度区间的加速行为特征点;对于所有速度区间的加速行为特征点,以平均速度为自变量,以加速度绝对值|ai|为因变量,按照二元一次方程进行回归,得到每辆新能源车的加速行为特征曲线;最后将所有新能源车的加速行为特征曲线作为样本,使用基于密度的聚类方法对其进行分类,将包含样本最多的类簇的中心曲线作为相对异常加速行为的阈值曲线y=A1x2+B1x+C1

S303:对同一辆新能源车的所有减速行为样本,将其按照平均速度大小划分成若干个速度区间;在每个速度区间内将落入该区间的所有样本按照|ai|从小到大进行排序,得到第二加速度序列,然后取第二加速度序列的第P百分位数作为该速度区间的减速行为特征点;对于所有速度区间的减速行为特征点,以平均速度为自变量,以加速度绝对值|ai|为因变量,按照二元一次方程进行回归,得到每辆新能源车的减速行为特征曲线;最后将所有新能源车的减速行为特征曲线作为样本,使用基于密度的聚类方法对其进行分类,将包含样本最多的类簇的中心曲线作为相对异常减速行为的阈值曲线y=A2x2+B2x+C2

所述的步骤S4的具体实现方法为:

S401:对同一辆新能源车的所有运行数据,按照其平均速度大小划分成若干个速度区间;

S402:在每个速度区间内将落入该区间的所有样本按照加速踏板行程从小到大进行排序,得到加速踏板行程序列,然后取加速踏板行程序列的第Q百分位数作为该速度区间的踏板行为特征点;

S403:对于所有速度区间的踏板行为特征点,以平均速度为自变量,以加速踏板行程jsi为因变量,按照二元一次方程进行回归,得到每辆新能源车的加速踏板行程变化特征曲线;

S404:将所有新能源车的加速踏板行程变化特征曲线作为样本,使用基于密度的聚类方法对其进行分类,将包含样本最多的类簇的中心曲线作为相对异常踩踏加速踏板行为的阈值曲线y=A3x2+B3x+C3

所述的步骤S5的具体实现方法为:

S501:对于待检测的目标新能源车,其变速行为样本数据集中共含有Total_Count加速条车辆处于加速状态的加速行为样本,逐条将加速行为样本的平均速度作为自变量代入阈值曲线y=A1x2+B1x+C1中,然后与同一条加速行为样本中的加速度绝对值|ai|进行比较,若满足则将该条加速行为样本视为异常加速;

计算异常加速行为特征值:

式中:Count异常加速为Total_Count加速条加速行为样本中被视为异常加速的样本条数;

S502:对于待检测的目标新能源车,其变速行为样本数据集中共含有Total_Count减速条车辆处于减速状态的减速行为样本,逐条将减速行为样本的平均速度作为自变量代入阈值曲线y=A2x2+B2x+C2中,然后与同一条减速行为样本中的加速度绝对值|ai|进行比较,若满足则将该条数据视为异常减速;

计算异常减速行为特征值:

式中:Count异常减速为Total_Count减速条减速数据中被视为异常减速的数据条数;

S503:对于待检测的目标新能源车,其运行数据中共含有Total_Count加速踏板行程条加速踏板行程数据,逐条将加速踏板行程数据中的当前瞬时速度Vi作为自变量代入阈值曲线y=A3x2+B3x+C3中,然后与同一条加速踏板行程数据中的加速踏板行程jsi进行比较,若满足jsi(A3*Vi2+B3*Vi+C3),则将该条数据视为异常踩踏加速踏板;

计算异常踩踏加速踏板行为特征值:

式中:Count异常踩踏为Total_Count加速踏板行程条加速踏板行程数据中被视为异常踩踏加速踏板的数据条数;

S504:对于待检测的目标新能源车,计算其危险驾驶行为总特征值Vall,计算公式为:

Vall=αVac+βVad+γVsa

S505:若该目标新能源车的危险驾驶行为总特征值Vall高于特征值阈值,则判定该车辆为危险驾驶车辆。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于绍兴数鸿科技有限公司,未经绍兴数鸿科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910589919.1/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top