[发明专利]基于不确定性上界估计的飞行器离散滑模自适应控制方法有效

专利信息
申请号: 201910626185.X 申请日: 2019-07-11
公开(公告)号: CN110456636B 公开(公告)日: 2022-04-01
发明(设计)人: 许斌;程怡新;杨舒;曲浩然;梁捷 申请(专利权)人: 西北工业大学
主分类号: G05B13/04 分类号: G05B13/04
代理公司: 西北工业大学专利中心 61204 代理人: 刘新琼
地址: 710072 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 不确定性 上界 估计 飞行器 离散 自适应 控制 方法
【说明书】:

发明涉及一种基于不确定性上界估计的飞行器离散滑模自适应控制方法,用于解决现有飞行器离散控制方法实用性差的技术问题。对飞行器纵向通道动力学模型进行欧拉离散化,得到原有系统的离散形式;考虑系统因果关系,建立离散严格反馈系统的等价预测模型;定义系统不确定性,设计带有死区的自适应律对未知的不确定性上界进行在线估计;在不确定性上界更新律中引入上界估计误差,提升了估计精度;定义滑模面,用未来期望输出来设计当前控制输入,设计基于反步法的离散滑模自适应控制器;本发明结合计算机控制特点,通过模型转换设计的离散滑模控制器有效避免了非因果问题,提升了飞行控制系统的鲁棒性和自适应性,适用于工程应用。

技术领域

本发明属于飞行器控制领域,具体涉及一种基于不确定性上界估计的飞行器离散滑模自适应控制方法。

背景技术

在实际工程中,随着计算机技术的发展,许多高性能飞行器都装备了计算机系统,其控制任务大部分都需要由机载计算机实现,因此研究离散情形下的先进控制方法对于飞行器控制研究意义重大且有着迫切需求。

离散控制器的设计通常可采用两种方法:1)首先根据连续控制对象设计控制器,然后将连续的控制器离散化;2)直接根据离散化的控制对象设计离散控制器。第1种方法需要较快的采样速率,对系统硬件要求较高。而在实际工程中,飞行控制系统较难实现较快的采样率,因此需要针对第2种方法开展离散控制研究。

《Neural discrete back-stepping control of hypersonic flight vehiclewith equivalent prediction model》(Bin Xu,Yu Zhang,《Neurocomputing》,2015年第154卷)一文采用神经网络逼近飞行动力学不确定性,并基于误差反馈设计离散控制器。该设计并未考虑神经网络内部学习机制且鲁棒性不高,不利于工程实现。

发明内容

要解决的技术问题

为了克服现有飞行器离散控制方法实用性差的不足,本发明提供一种基于不确定性上界估计的飞行器离散滑模自适应控制方法。该方法通过对飞行器模型严格反馈形式进行欧拉离散化,得到系统离散模型。通过不断向前预测,建立系统状态在未来时刻的相互关系,进一步考虑系统未知状态,研究系统控制输入与未来输出之间的关系,建立输入输出等价预测模型。基于反步法设计离散滑模控制器,针对未知不确定性上界采用带有死区的自适应律进行在线估计,提升飞行控制系统鲁棒性和自适应性,便于工程实现。

技术方案

一种基于不确定性上界估计的飞行器离散滑模自适应控制方法,其特征在于步骤如下:

步骤1:考虑一类飞行器纵向通道动力学模型:

其中,Xs=[V,h,α,γ,q]T为状态变量,Uc=[δe,β]T为控制输入;V表示速度,γ表示航迹倾角,h表示高度,α表示攻角,q表示俯仰角速度,δe表示舵偏角,β表示节流阀开度;T、D、L和Myy分别表示推力、阻力、升力和俯仰转动力矩;m、Iyy、μ和r分别表示质量、俯仰轴的转动惯量、引力系数以及距地心的距离;

步骤2:定义高度跟踪误差其中hd为高度参考指令;

设计航迹角指令γd为:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201910626185.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top