[发明专利]一种基于深度学习行为识别的校园暴力评估方法在审

专利信息
申请号: 202010009107.8 申请日: 2020-01-06
公开(公告)号: CN111738044A 公开(公告)日: 2020-10-02
发明(设计)人: 杨建锋;熊剑民;杨金文;张帆;王伟;魏瀚哲;陈彦超 申请(专利权)人: 西北大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/04;G06N3/08
代理公司: 西安西达专利代理有限责任公司 61202 代理人: 刘华
地址: 710069 陕西*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 学习 行为 识别 校园 暴力 评估 方法
【权利要求书】:

1.一种基于深度学习行为识别的校园暴力评估方法,其特征在于,包括以下步骤:

1)参考现有公开数据集,结合特定校园应用场景,自制用于构建校园暴力评估神经网络模型所需的视频数据集,并进行数据压缩、集成、清洗和标记等预处理操作;

2)引入深度学习神经网络—3D-CNN,根据需求设计确定隐藏层数量、激活函数选择、各层次卷积核大小等网络内部结构;

3)将步骤1)中的数据集按2:8比例随机划分为测试集和训练集;依照交叉验证法把训练集分为h个不相交的子集,依次输入步骤2)所设计的3D-CNN网络中,训练构建3D-CNN校园暴力评估模型,

4)摄像头个体新输入的视频数据流经步骤3)所构建的暴力评估模型分析识别行为类别,得出该摄像头所处位置的实时安全状况;如有异常,立即发出警报。

2.根据权利要求1所述的一种基于深度学习行为识别的校园暴力评估方法,其特征在于,所述的行为信息包括携带器械、表情和肢体动作三个部分。

3.根据权利要求1所述的一种基于深度学习行为识别的校园暴力评估方法,其特征在于,所述的视频数据包括时间、摄像头编号与位置信息。

4.根据权利要求1所述的一种基于深度学习行为识别的校园暴力评估方法,其特征在于,所述的3D-CNN网络包括预拆分通道层、卷积层、激活层、池化层和完全连接层,在二维帧图像的基础上,引入时间维度,考虑多个连续帧的运动编码信息,从相邻的视频帧生成多个信息通道,并对每个通道进行卷积操作以获得更好的运动特征表示,数学表达式如下:

其中表示第i层第j个特征映射中(x,y,z)位置处的卷积结果;max()为激活函数;bij为该特征映射的偏差;m为第i-1层中特征映射的索引;为第k个特征位置(p,q,r)处的值;Pi,Qi,Ri为卷积核的宽度、深度和高度。

5.根据权利要求1所述的一种基于深度学习行为识别的校园暴力评估方法,其特征在于,所述的校园暴力评估模型中的暴力评估方法包括步骤:

1)定义行为安全范围,确定危险器械种类、遭遇暴力后可能出现的表情以及暴力发生时的肢体动作;

2)人工标记数据,根据上述危险定义,将切分好的数据标记为行为正常与行为异常两类标签。

6.根据权利要求1所述的一种基于深度学习行为识别的校园暴力评估方法,其特征在于,所述的数据预处理包括进行数据清洗,将视频数据按相同时间间隔拆分为连续帧,并进行异常、重复数据清除,错误纠正,缺失数据进行填充;数据压缩,按一定格式压缩,降低储存容量,去除视频数据中的冗余信息;提取关键帧,连续的视频其相邻帧之间具有冗余信息,根据这一特性,利用差分法,去除视频中的冗余帧,可帮助节约储存空间,降低模型的学习难度;数据集成,利用数据库技术将各类数据信息集成并统一存储;数据标记,对处理好的一段连续帧,人为标记行为异常与否标签。

7.根据权利要求1所述的一种基于深度学习行为识别的校园暴力评估方法,其特征在于,所述交叉验证法包括将将全部训练集U分为h个不相交的子集,样本总数为S,则每个子集有S/h个训练样本,对应的子集为{U1,U2,U3,...,Uh},并从训练集中每次取出一个子集Ui,将剩余h-1个子集输入神经网络进行训练,Ui不参与训练,子集Ui的输出准确率为Ai,即为此次训练的结果,将训练h次的准确率{A1,A2,A3,...,Ah}取平均值,得到最终的准确率A以评估模型的泛化能力。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北大学,未经西北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010009107.8/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top