[发明专利]一种基于小波包分解和深度学习的刀具磨损实时预测方法有效
申请号: | 202010584310.8 | 申请日: | 2020-06-23 |
公开(公告)号: | CN111832432B | 公开(公告)日: | 2022-03-18 |
发明(设计)人: | 史铁林;段暕;轩建平;詹小斌;江苏;景锐真 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G05B19/4065;G06N3/04;G06N3/08 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 孔娜;李智 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 波包 分解 深度 学习 刀具 磨损 实时 预测 方法 | ||
本发明属于刀具状态监测相关技术领域,其公开了基于小波包分解和深度学习的刀具磨损实时预测方法,包括以下步骤:(1)同步采集工件加工过程中的相关传感器信号,并选取其中稳定的信号段作为待分析的信号段,同时扩充待分析信号样本以增加样本量;对待分析信号进行小波包分解变换,以得到多个小波包系数二维矩阵;(2)小波包系数二维矩阵对应都作为一个特征提取CNN模型块的输入,并将每个特征提取CNN模型块输出的一维特征矩阵拼接成更长的一维矩阵,进而进行特征融合并建立两层全连接网络,由此得到卷积神经网络模型;(3)将待分析的信号数据输入到所述卷积神经网络模型中,以实时预测刀具的磨损量。本发明能降低成本,且适用性强。
技术领域
本发明属于刀具状态监测相关技术领域,更具体地,涉及一种基于小波包分解和深度学习的刀具磨损实时预测方法。
背景技术
刀具磨损状态将会直接影响加工工件表面质量,进而影响工件的良率,长期使用过度磨损状态下的刀具将会极大地影响机床的主轴精度,导致机床需要长时间停机检修。根据相关调研,通过对机床刀具状态进行准确监测,加工过程中机床主轴转速可以提高10%到50%,降低20%机床停机时间,工厂可以节省10%到40%的总成本,因此,刀具状态检测系统具有良好的市场前景。
目前,市场上的主流方法是采用数据驱动的模型来实现刀具磨损实时预测,传统的数据驱动的模型主要是从采集的信号中提取与刀具磨损状态密切相关的敏感特征,然后建立回归模型,并通过后续的模型训练确定这些敏感特征与刀具磨损量之间的关系,从而实现对刀具磨损的准确预测。虽然小波包分解在刀具磨损实时预测方法中已经广泛应用,基于小波包分解实现刀具磨损预测的方法通常是从分解出的各级小波包系数中提取相关的能量特征。但是这类方法具有很大的弊端,敏感特征的提取需要大量的专业知识和特征提取实践经验,而且特征提取过程费时费力,所建立的模型结构较为简单,泛化能力有限,预测结果容易受到外界干扰,导致模型的适用性受限。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种基于小波包分解和深度学习的刀具磨损实时预测方法,所述预测方法将待分析信号的最后一层的多个小波包系数变换成二维矩阵并作为模型的输入,针对每一个小波包系数二维矩阵建立对应的小波包系数自适应特征提取模型块,然后对所提取的特征进行融合,建立线性回归层,进而实现刀具磨损实时预测。同时,所述预测方法采用PReLU作为数学模型激活函数,采用Adam算法作为模型优化算法,采用监督式学习方法,通过分析加工过程中机床产生的相关信号,建立起目标信号与刀具磨损量之间的关系,从而解决刀具磨损实时预测困难这一问题。
为实现上述目的,按照本发明的一个方面,提供了一种基于小波包分解和深度学习的刀具磨损实时预测方法,所述预测方法包括以下步骤:
(1)同步采集工件加工过程中的各类传感器信号,并选取加工过程中稳定的信号段作为待分析的信号段,同时扩充待分析信号样本以增加样本量;对待分析信号进行小波包分解变换,以得到多个小波包系数二维矩阵;
(2)每个小波包系数二维矩阵对应都作为一个特征提取CNN模型块的输入,并将每个特征提取CNN模型块输出的一维特征矩阵拼接成更长的一维矩阵,进而进行特征融合并建立两层全连接网络,由此得到卷积神经网络模型;
(3)将待分析的信号数据输入到所述卷积神经网络模型中,以实时预测刀具的磨损量。
进一步地,在主轴及工作台上分别安装三向加速度传感器,并安装麦克风传感器,以同步采集工件加工过程中的各类传感器信号。
进一步地,所述传感器信号包括振动信号及麦克风信号。
进一步地,该特征提取CNN模型块由一个卷积核为3×3的卷积层、一个最大池化层、以及若干个特征提取CNN子块组成。
进一步地,每个特征提取CNN子块由两个卷积层和一个最大池化层组成。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010584310.8/2.html,转载请声明来源钻瓜专利网。
- 上一篇:针对行动不便者上下车辆的辅助设备
- 下一篇:一种水溶性腐植酸肥的制备方法